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Chapter 1 

I N T R O D U C T O R Y  R E M A R K S  

Ever since the enunciation of the Bloch's theorem in  1928 , considerable successful effort has 
gone into the understanding of the electronic properties of crystalline solids with periodic 
potential. However most solids around us are disordered. Deviation from crystallinity seems 
the rule rather than exception. 

Any deviation in a crystal from a perfectly periodic lattice arrangements of atoms is an 
imperfection. Examples of common point imperfections are chemical impurities , vacant lat- 
tice sites and extra atoms not in regular lattice positions . The crystal surface is a planer 
imperfection .where lattice periodicity is broken in a direction normal to the surface . Real 
crystals are always imperfect in some respect . Many important properties are controlled as 
much by imperfections as by the nature of the host crystal , which may act as a vehicle or 
solvent or matrix for the imperfections. The conductivity of some semiconductors are due to 
trace amounts of chemical impurities . The colour of many crystals arise from the imperfec- 
tions. The lurainiscence of crystals is always connected with the presence of impurities. The 
mechanical and plastic properties are usually controlled by defects. 

The nature of the common point imperfections are fairly well understood for many solids. 
The bulk of the recent work is concerned with disordered solids with high concentration of 
such imperfections . Concerted and extensive effort began into the study of these disordered 
solids only in the late sixties. Disordered solids encompass a rather extensive class. Broadly 
speaking they can be grouped into following classes: 

(1) CompositionaUy disordered solids like random alloys, both substitutional ( CuZn, CuPd, 
CuAu, FeTi,  NiPt etc) and interstitial (PdH). 

(2) Structurally disordered solids as in the case of amorphous materials like amorphous Si, 
amorphous Se and the glasses. 

(3) Magnetic alloys with compositional disorder ( AuFe , CuFe , FeNi etc) and structural 
disorder like metallic glasses. 
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(4) Amorphous alloys a-AuxSil_~ , Lal_~Sr=VOs and doped semiconductors like Si:P with 
associated localization effects. 

(5) Polymers. 

The kind of problems one encounters when one turn to random systems are also multifarious. 
Some of them are : 

(1) The understanding and description of the nature of disorder-driven localization of the 
electrons in random systems. 

(2) The theoretical understanding of various electronic properties like density of states, photo- 
emission, optical properties and electron related magnetic properties. 

(3) The understanding of disorder linked transitions like compositional order-disorder transi- 
tions. 

In the present thesis we have made an attempt to address some of these problems related 
to disordered materials. Chapter 2 is concerned with transport of electrons through random 
media . Since Anderson's suggestion in 1958 that sufficient disorder can localize electronic 
states, the physics of quantum transport has received immense interest. Though exponential 
localization in presence of weakest amount of disorder is an accepted fact in one dimension 
, the situation is not settled for two dimensions. Analytic work on quantum transmittance 
in two dimension has proven to be difficult and many results apply only to limiting cases . 
The vector recursion technique (Codin and Haydock , 1988) provides a stable and accurate 
method for numerical determination of transmittance and hence conductance via the Landauer 
formula (Imry, 1986) of disordered system at T - O ~ K . We have applied this methodology 
in conjunction with coarse-graining technique of real space renormalization procedure to study 
the scaling behaviour of resistance in a two-dlmensional tight-binding Anderson model with on- 
site disorder. Same vector recursion method has also been used for detecting probabilistically 
exceptional stochastic resonances in the localized regime, exhibiting high transmittance value in 
a two-dimensional Quantum Percolation model characterized by random occupancy of bonds 
with a given probability. Multifractal analysis has been applied for characterising internal 
geometric structure of these resonating states . While in real materials , the situation is 
complicated by the fact that electron-dectron interaction masks the localization effect due to 
disorder , these simple tight-binding modds help in understanding the effect of disorder in 
quantum transport in absence of correlation effect. 

In Chapter 3, we propose and demonstrate practical implementation of the augmented space 
recursion method for obtaining configuration averaged quantities related to electronic structure 
of disordered alloy systems. While in recent years, there have been attempts (Stocks et. al. , 
1977; Kudrnovsk~ and Drchal, 1990) at calculating the electronic structure of disordered alloys 
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from first-principles , most of the works are based on mean-field approaches like the coherent 
potential approximation (CPA) in conjunction with first-principle electronic structure methods 
like the KKR , LMTO . Though these CPA-based first principle methods give reasonable 
descriptions of disordered alloy systems in many cases it is expected to fail in describing effects 
involving multisite scattering like clustering ~ local lattice distorsion, short-range ordering etc 

The augmented space recursion method based on augmented space theorem (Mookerjee , 
1973) for general configuration averaging and the recursion method (Haydock et. al., 1972) , 
provides a theory extending beyond the CPA and is capable of handling effects arising from 
multisite correlations. A first principle application of this methodology within the framework 
of TB-LMTO method (Andersen and Jepsen ~ 1984) of electronic strcuture calculation has been 
made to alloy systems like AgPd, CuPd, CuBe. 

Knowledge of electronic structure also provides us with the information of phase forma- 
tion and stability of substitutional alloy systems . It requires accurate approximations of the 
configurational energy on one hand and the use of approximate statistical model on the other 

Models are often formulated (Gonis et. al. , 1987) to represent configurational energy in 
terms of effective pair interactions. The problem of stability analysis thus reduces to obtaining 
ground states of the three-dimentional Ising model whose interaction parameters are obtained 
by first-principle electronic structure calculations . An alternative viewpoint of phase forma- 
tion is the instability of the disordered solid solution phase with respect to static concentration 
wave perturbations corresponding to particular superstructure formation ~ indicated by min- 
ima in the Fourier transform of the effective pair interaction . An augmented space recursive 
approach in conjunction with the TB-LMTO method has been made in Chapter 4 for the first 
principle study of phase stability and phase transition in PdV alloys where a number of ordered 
super-structures are present at various concentrations and PdRh alloys which is a well-known 
phase-segregating system throughout the concentration range. 

For disorderd systems ~ the major issue is the concept of configurational averaging . The 
question is whether or not the average of the physical quantity will be observed with a proba- 
bility unity in the thermodynamic limit of infinite extension. If it is so then the quantity will 
be called self-averaging. The situation encountered in magnetic alloys with quenched disorder 
is that the partition function is not self-averaging but its logarithm is . Thus, depending upon 
whether one is concerned with static or dynamic aspect of disorder, the configuration averaging 
of thermodynamic potential has to be carried out differently (Ducastelle , 1991). Chapter 5 
deals with a diagrammatic calculation based on the fermionic field theoretic approach of aug- 
mented space formalism for obtaining averaged thermodynamic potential in quenched random 
sytem along with its difference with usual annealed case. 

In all our calculations ( leaving the analytic calculation of the fifth chapter ) we have made 
use of the recursion procedure . Randomness destroys periodicity and for a disordered system 
the Bloch wavevector ~ no longer remains a good quantum number . This is reflected in the 
smearing out of the van Hove singularities in the density of states . As a result application of 
k-space techniques demands introduction of some artifical periodicity via the mean field the- 
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ories like coherent potential approximation. On the other hand the recursion method based 
on real space technique has the power of exploring the true environmental effect . The recur- 
sion processes define a hierarchy of environments with the relative influence of environments 
explicitly displayed in the local properties one is interested in . Since the successively more 
distant environments have lesser effects on local properties, the recursion process is dominated 
by environments close to the local site and finite sized cluster calculations with terminators ap- 
pended give reasonably accurate results . Furthermore, the numerical accuracy and stability 
of the recursion method has been studied elaborately and can be controlled efficiently. 

In all subsequent chapters we have started with an introduction defining the motivation, 
a brief discussion of previous works wherever possible , a presentation of our formalism and 
results and we have ended with a summary of the content. 



Chapter 2 

QUANTUM MECHANICAL 
TRANSPORT THROUGH 
DISORDERED MEDIA * 

2.1 I N T R O D U C T I O N .  

Electrons interacting with lattice imperfections get scattered . The scattering manifests 
itself as electrical resistance of the sample arising out of energy conserving momentum random- 
ization. At finite temperatures , in addition to such elastic scatterings one also has phonon 
assisted inelastic scat terings.  In the present work we will consider the zero-temperature case, 
so that only elastic scatterings are responsible for momentum randomization . Parametrizing 
the degree of elastic scattering by the elastic mean free path length 1~ , which is the mean 
distance travelled by a conduction electron between two successive collisions, two asymptotic 
limits can be identified, one the weak scattering limit i.e. , kFl~ >> 1 (kf  is the Fermi wavevec- 
tor ) and the opposite dirty limit, i.e,kfl~ ~ 1. In the weak scattering l imi t ,  the interactions 
are more or less adequately accounted for by the Boltzmann equation which describes tran- 
sition between the states of the perfect crystal induced by the interactions giving rise to the 
Boltzmann residual resistivity at T = O ~ K. On the other hand in the dirty limit of strong 
scattering, quantum effects become predominantly important. An important consequence of 
these quantum phenomena is coherent backscattering (Khmelnitskii,1984). As a general wave 
phenomenon, what this effect states is that  as long as all the scatterings are elastic and we have 
time reversal invariance, the incident and back-scattered waves (those with scattering angle G 
= 7r) are always coherent and should therefore exhibit constructive interference. As a result 
scattering in the backward direction is twice as probable as in the other directions leading to 

1 * The contents of this chapter has been published in g.Phys.Condens.Matter 4 7865 (1992) and Phys. 
Rev. B47 3097 (1093) 
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a diminished diffusion constant. For strong enough scattering correction to diffusion constant 
is correspondingly large. When the correction becomes equal in magnitude to the classical 
diffusion constant the electron gets localized. 

This fascinating phenomenon of electron localization caused by quantum interference effects 
was first pointed out by Anderson (1958). He demonstrated that for a single band tight-binding 
Hamiltonian on a three dimensional lattice having band-width B and a rectangular distribution 
of width W of the site diagonal matrix elements of the potential all states are localized for 

> o. .o=,  

Since then it has become increasingly clear that the presence of quenched disorder in an 
otherwise crystalline system brings about an entirely new behaviour of electrons. This manifests 
itself in effects like negative magnetoresistance, nOn additive and non self-averaging nature of 
quantum resistances etc. The work we present in this chapter focuses on this strong disorder 
regime with its associated quantum effects. 

As is well known, an impurity may produce a bound state with the wavefunction falling off 
exponentially away from the impurity site. This picture of localized impurity level is adequate 
when concentration of impurity atoms is low but the natural question one can ask is what 
happens when the impurities instead of being almost isolated are close to one another. In this 
situation, there is sufficient admixture between localized orbitals bound by deep but statistically 
probable fluctuations in the random potential. If the potential be of sufficiently random nature 
then the states that are nearly degenerate in energy are in general very far apart in space 
while the orbitals that are close to each other in space are in general very different in energy 

Thus because of statistical repulsion of levels in space and energy the admixture of localized 
states cannot produce in general an extended state composed of linear combinations of infinitely 
many localized states. This argument is valid for strong enough disorder irrespective of the 
dimensionality of the system. 

The real impetus to the theory of quantum transport in disordered systems came from the 
work of Thouless (1974) who gave the first ever microscopic definition of conductance G for a 
finite sample of size L : 

G = (e"l h)(6E/AE) 

where AE is the level spacing at the Fermi level and 6E is the level shift at the Fermi level 
due to a change of the boundary conditions from symmetric to antisymmetric ones. e2/Tr~ 
sets the scale of the conductance. This formed the basis of the one parameter scaling theory of 
localization. Based on the ansatz that the conductance is the only relevant variable, Abrahams 
et. al. ( 1979 ) proposed that 

Ologg 
OlogL 



Quantum Mechanical Transport through Disordered Media 7 

is an analytic function of the dimensionless conductance g given by 

g -  G 

alone and that the zero of the fl function is an unstable fixed point characterized by con- 
ductance gc. Thus for g > gc the conductance scales to the metallic regime, whereas for g < 
gc it scales to the insulating regime. An important consequence is that for dimensions D = 
1 and D = 2, there is no truely metallic regime, while in D = 3 the conductance vanishes at 
the mobility edge continuously. In other words , localization of electronic states arising out 
of statistical repulsion of levels in space and energy, holds good for D = 1 and 2 for arbitrary 
amount of disorder. 

The microscopic basis of the scaling theory and critical behaviour is a subject of contin- 
uing debate. The experimental results are complicated by the fact that the electron-electron 
interactions are to be distangled from the localization aspects. By this time it is now more 
or less universally accepted that in an one-dlmensional crystal even the weakest amount of 
disorder changes the nature of the electronic wave function from an extended Bloch state to an 
exponentially decaying one and in three dimensions, beyond a critical value of disorder, there 
exists a sharp mobility edge separating the localized states from the extended ones while the 
situation for two dimension is not settled. In general, the analytic solution of the problem 
proves to be difficult , nor are analytic attempts free from controversy. It is for this reason 
there has been considerable emphasis on numerical studies. The numerical studies on two- 
dimensional disordered systems have led to controversy. Some of them suggesting the presence 
of a weak localization regime for small enough disorder while others suggesting all states to 
be exponentially localized as in an one-dimensionai disordered systems. However most of the 
numerical methods that have been used either assumes exponential localization a priori or 
involves numerically unstable procedures like divergent recursions and matrix inversions. This 
motivates us to examine the problem of localization in two dimensional disordered systems 
using the numerically stable vector recursion technique which is applicable for any geometry of 
the system without any a priori assumption of exponential localization. 

Another interesting feature of transport through random media is the presence of sharp re- 
producible structures in conductance measurements in small devices and in tunneling junctions 
at low temperatures. These structures have been interpreted in terms of resonant tunneling 
via probabilistically exceptional states in localized regimes. The conductance of a macroscopic 
system in strongly localized regime obey's MoWs law of variable-range hopping ( Mott ,1968) 
and can be described successfully using percolation theory. Obviously this picture breaks down 
when the sample length L is reduced so that it becomes comparable to the correlation radius 
of the critical network. It has been proposed that in that case the conduction proceeds via 
variable range hopping along isolated chains. Finally when the sample length becomes of the 
order of most probable hopping length R0 , inelastic processes are no longer important and 
the conduction is expected to occur via resonant tunneling. Theoretical understanding of such 
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resonant tunneling in strongly localized structure has been put forward by Azbel (1983) .An 
alternative veiwpoint was proposed by Pendry ( 1987 ). 

Azbel's theoretical interpretation of resonating states was based on the assumption of ex- 
ponential localization of electronic states . For exponentially localized states with centre of 
localization situated nearer one of the metallic contacts attached with two sides or corners of 
the sample , intution tells that an electron jumping into the state from that particular side 
will nearly always escape back to that side because the localized state overlaps most with the 
contact on that side. Electrons incident from the opposite end will find it difficult to tunnel 
into the state because of the relatively small overlap with contact on that side. Thus the trans- 
mission coefficient will always be small , unless the state is localized near the centre of the 
disordered material. This simple minded argument of identifying states near the centre of the 
system as dominating the transport properties has been critised by Pendry on the ground that 
far from either metallic contacts, they are very long-lived and contribute to the conductivity 
over a restricted range of energies. Pendry proposed an altogether new mechanism of transport 
in the localized regime. Such states are a necklace of quasi-extended states with approximately 
equal energy streching from one side of the disordered sample to the other. The band-width 
is determined by the overlap integrals between individual states so that such a necklace state 
will serve as an effective contributor to transport process having a wider band-width for com- 
munication than the Azbel states. These resonating states carry little probabilistic weight but 
dominate the statistics. The measurements carried out on series of multi-channel rectangular 
metal-oxide-semiconductor field effect transistors at temperature below 0.1 ~ K do indicate that 
conduction occur via resonant tunneling through channels that contain more than one local- 
ized state ( Popovic et. al. 1991). Numerical studies for resonating states in localized regime 
have been carried out . Most of them seem to support Azbel's idea. The remainder portion 
of our work on study of transmittance in disordered medium will be devoted in detecting and 
identifying the nature of such resonating states. 

2.2 M O D E L S  S T U D I E D  

2.2.1 T h e  A n d e r s o n  M o d e l  

In his paper entitled The absence of diffusion in certain random lattices Anderson (1958) 
considered a simple model for a random system in which the electron has an energy e/ at 
lattice sites i ,  spread with equal probobility in the range -W/2 _ ei _ W / 2 .  The excitation 
propagates by hopping from site i to site j , for which the amplitude is Vii. The model called 
the Anderson model,  has the Hamiltonian 

where a~ and a /are  creation and annihilation operators for the electron at the site i. The 
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hopping (or overlap) term is generally assumed to connect only the nearest neighbours with 
amplitude V ,  so that the electron kinetic energy spread or bandwidth is B= 2ZV where Z is 
the number of nearest neighbours. For W - 0 all the sites have the same zero energy, and 
the model describes a perfect crystalline solid in the tight-binding approximation. For small 
W electrons are weakly scattered by the random local energy fluctuations and diffuse rather 
than propagating ballistically. It was believed prior to Anderson's work that as W increases 
, an electron in the random system continues to diffuse but more and more slowly. Anderson 
showed that this is not true and that as W/B exceeds a certain critical amount , there is a 
qualitative change in the nature of the electronic states. They become spatially localized or 
non-diffusive. 

There are a number of features which have been left out in this model. 

(i) The hopping term V~j also may have distribution of random values. 

(ii) There are often many orbitals at each site. 

(iii) The fundamental and the most important fact missing is that interaction between elec- 
trons. This introduces new effects like Mott transition (Mort , 1974) even for a system 
without disorder. 

In spite of all these, disorder is described in a particularly simple way in the Anderson 
model. It gives the qualitative understanding of the effect of disorder taken alone. Futhermore 
the model is applicable to wave propagation in general. This includes acoustical as well as 
optical wave propagation. The latter is in a sense ideal in that it is free from the interaction 
effect, the most fundamental point left out in Anderson model. 

2.2.2 The Quantum Percolation Model  

The well studied classical percolation model (Stauffer,1979) deals with clusters ( groups of 
neighbouring occupied sites or bonds) that are formed on a lattice whose every site or bond is 
occupied (unoccupied) randomly with probability p(q=l-p) and the phenomena of percolation 
near the concentration pc(qc) where for the first time a cluster is formed connecting two ends 
of the lattice. The singularities in the percolation model occur in the properties of the physical 
clusters , rather than in quantities related to the thermodynamic properties. Though it is 
a model of much utility in describing many physical situations ranging from dilute magnets 
to polymer gelation , it fails in cases like low temperature electrical transport properties of 
granular metal film, propagation of sound waves through random distribution of pipes etc. 
The understanding of these phenomena needs the inclusion of quantum effects. The quantum 
percolation model introduced by Kirkpatrick and Eggarter (1972) can be thought as the quatum 
version of the classical model of occupied and missing links. In particular, it is a variant 
of Anderson model where the hopping term becomes random, taking values 0 and V with 
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probability q and l-q, keeping the on-site term independent of lattice occupancy. This model 
gives an understanding of interplay between the geometry and quantum effects. 

Switching on quantum effects on the classical model of percolation theory , introduces a 
number of differences compared to classical case. In the classical case, the backbone of the 
infinite cluster (obtained by removing all the dead ends , namely the dangling bonds), plays 
the central role for transmission. Whereas in the quantum-mechanical case the whole cluster is 
relevant since wavelets are reflected from the dangling bonds and may coherently interfere. It 
should also be emphasized that in the quantum-mechanical problem the energy of the incoming 
electron is an additional parameter and the transmission occurs only within the energy band 
or window. 

2.3 P R E V I O U S  N U M E R I C A L  A T T E M P T S  

2.3 .1  S c a l i n g  i n  t h e  T w o - d i m e n s i o n a l  A n d e r s o n  M o d e l  

(i) Picard and Sharma (1981) - Picard and Sharma studied the problem of electron localiza- 
tion in two-dimensional Anderson model by investigating the behaviour of a characteristic 
length lmax , defined as the inverse of the smallest Lyaponov characteristic exponent of 
random transfer matrix products on strips. It represents the largest possible localization 
length for an eigenvector if it exists at a given energy. Their study indicate that the 
states are exponentially localized for disorder greater than a critical value and below the 
critical disorder the states are singul~r, decaying to zero with a power law. However 
these conclusions have critisized on the ground that the system size used were small. 

(ii) McKinnon and Kramer  (1981) - The methodology employed by McKinnon and Kramer 
is based on the slice recursion technique. In this method one calculates the properties of 
a long chain with finite cross-section ( width M for a 2D strip and M x M for a 3D block) 
and studies how the properties of the chain scales with M .  In practice the localization 
length is calculated for the strip and then the characteristic length scale for the sample 
of infinite cross-section which is identified as the 2D localization length is obtained by 
assuming a scaling law in analogy with the critical phenomena. 

With this method McKinnon and Kramer concluded that 2D systems display behaviour 
similar to 1D system with universal exponential localization and a smooth variation of 
the localization length in agreement with the scaling theory of localization. 

However the methodology of slice recursion technique have several points that need further 
consideration. Firstly as far as the scaling of the electronic state is concerned the work 
Pastawski et. al. (1983) ( discussed below) reveal that a strip and a true two-dimentinal 
block are expected to behave differently. In particular with the increase of strip width, 
the exponential localization begins to break down in the weak disorder regime. They 
find that the proportion of non-exponentially localized states increase as the width of 
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(iii) 

the system increases. The second point is concerned with the numerical stability of the 
method itself. Godin and Haydock (1988) noted that by defining recursion in terms 
of slices, the method introduces an instability compared to 1D case. Quantities such as 
Green function contain polynomials or ratio of  polynomials in energy whose orders are 
comparable to the number of basis states. Many numbers of greatly differing magnitudes 
are added together creating errors that accumulate rapidly. 

Pastawski  et. al. (1983) - Pastwaski et. al. calculated the matrix continued fraction 
expansion coeffcients of diagonal element of self-energy A and looked for the convergence 
of continued fraction coefficients. They interpreted the convergence length l as measure 
of localization length. This is identical to the criteria that for state to be extended self- 
energy has to be non-real for which the continued fraction expansion donot converge. 
Their method involved the study of the statistical distribution of localization lengths 
among different configurations. The exponential localization length is defined through 
the assumption that the norm of the difference between successive convergents decreases 
exponentially, namely IlaCo  - ACo -I:  II ,..., exp(-NI with ~ the localization length equal 
to the convergent length l for exponential localization. Study on strip geometry indicate 
that the number of systems for which exponential fit is good decreases as the width of 
the strip increases . In other words the convergence procedure of using exponential fit 
becomes invalid suggesting the breakdown of exponential localization. According to the 
authors this suggests the setting of weak localization in accordance with the result of 
Picard and Sharma (1981). 

2.3.2 Stochast ic  Resonances  In Disordered Systems  

(i) Basu et. al. (1991) - Basu et. al. have used the transfer matrix formalism ( Liu and 
Chao ,1986) for detection and study of resonating states in one-dimensional tight-binding 
Anderson model. The transfer matrix relates,,the ,wavefunction at the n-th site to that 
at (n-t-l) th s i te ,  so that the transmitted wave is given by CN(E) -- tNr , where 
tN (E) carries information about the relative amplitude and phase of the transmitted 
wave for a sample of length N. The authors then have used that set { TN (E) = I tN (E) 
12 } as a set of measurements on a collection of chains of varying length { N } .  They 
have supplemented their study with multifractal analysis. Their study indicated that the 
resonating states detected by them are quasi-extended like states as proposed by Pendry. 
This method has the advantage of being exponentially fast when one keeps on adding 
length elements at the end of the original chain but has the disadvantage of being limited 
to one dimension only. 

(ii) Zhang and  Sheng (1991) - Zhang and Sheng employing the recursive Green function 
methodology predicted the presence of stochastice resonances in two-dimenisonal site 
quantum percolation model. They calculated the conductance of a sample of size L• 
by connecting perfectly conducting two dimensional leads at two sides of the sample and 
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imposing the hard wall boundary condition along the transverse direction in order to 
fix the number of propagating channels. The conductance related to transmission and 
reflection matrices via Landauer formula ( Imry, 1986 ) was obtained by expressing trans- 
mission and reflection matrices in terms of retarded Green function Gij(n,n') with source 
at n ~ of the channel j and receiver at n of channel i. The same recursive Green function 
method of calculating G~j(n,n') is also used to probe the wavefunctions of the resonating 
states with the additional knowledge of eigenfunction projection along transverse direc- 
tion in the pure lead, Plot of average probability density as a function of distance from the 
centre of a resonating wavefunction where the probability density is maximum, seemed 
to support Azbel's idea. However since the determination of average probability density 
involves directional averaging there remains high probability of necklace like nature of 
wavefunction with non-isotropic character to be washed out. This fact is indicated in our 
study. The same methodology has also been used by Xue and Lee ( 1988 ) to demonstrate 
that two-dimensional Anderson model sustain Azbel like resonances. 

2.4 M E T H O D O L O G Y  U S E D  I N  P R E S E N T  W O R K  

2.4.1 Determination Of The Transmittance and Wavefunction In 
Random Media 

The methodology to be employed for determining transmittance and wavefunction of electronic 
states, the chief ingredients for understanding wave propagation in disordered system is the 
vector recursion or block recursion technique (Godin and Haydock, 1988). The vector recursion 
technique is a generalization of the scalar recursion ( Haydock, 1980) and the related Lanw 
methods. The high accuaracy and stability which can be achieved using this family of methods 
is well undertstood (Haydock, 1989). 

Our system is a two-dimensional lattice with 2N sites. We shall describe the system by a 
tight-binding Hamiltonian of the type described below. 

Hgample -- E r + E E ~j[i)(j] 
i i jeNi 

The tight-binding basis orbitals {li)} is labelled by the sites on the lattice. Ni are the 
neighbours of i on the lattice. For the description of usual Anderson model with rectangular 
distribution of on-site random potential and non random off-diagonal term we have Vi# = V if 
i, j are nearest neighbours and 0 if not. 

The on-site probability distribution given by 

{ for -W/2 < __ w/2; 
otherwise. 
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The model of quantum percolation is a variant of this and can be described by a Hamiltonian 
given by 

i i jEN~ 

The diagonal non-random term e sets the zero of the energy scale. The nearest neighbour 
off-diagonal terms V~j randomly take value V if the bond exists and 0 if the bond is broken. 
The probability density of V~j is independent of the particular bond and is given by 

p(V~) = (i -q)~(v~- i) + q~(v~) 

q being the probability of a bond not to exist between two sites labelled by i and j, that is a 
broken bond. 

The opposite sides of the lattice are coupled via matrix elements to orbitals at the ends 
of periodic, seml-infinite one dimensional leads. We will describe the methodology for the 
case of two lead, attached to opposite corners of the lattice. An immediate generalization for 
the multi-lead case will be indicated. The lead basis states have constant nearest-neighbour 
hopping V', which is adjusted to have lead band-width comparable to or larger than that of 
the two dimensional sample. Incident waves can thus be reflected or transmitted by the sample 
through the leads. Expressed in tight-binding form, the lead Hamiltonian are thus given by 

H~. = ~ V' (li)(i + II + ii + 1)(ii) 
i=O 

Ho., = ~ V' (li)<i + ~1 + li + 1)(il) 
i=2N+1 

Determination Of Transmittance and Conductance. 

Transmittance for the above mentioned two dimensional system coupled with leads can 
be calculated as follows. Let [il) and [i2/v) be two site orbitals located at opposite ends of 
the lattice and [ul} denote 2Nx2 matrix whose two columns are the vectors which represent 
]il) and li2/v) respectively. The first step is to generate from this a set of 2Nx2 matrices 
{[ul}, [u2},..., [u/v}} which satisfy the recurrence relation 

Hlu,,} "-]u,,_~}B*. + lu.}A,~ + ]u.+l}B,~+l (2.1) 

where B~ , A,, and B,+I are two by two matrices and [uo} is taken to be 10}. The matrix 
inner product is defined as {ulv}t,,, = E ut, v~, and the orthogonality as {ulv}~ = I. It can be 
easily shown that demanding the orthogonality of matrix basis sets { [u} } gives A,, = {u,, ]Hlu,,) 
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while B.+I and [u.+x} may be unravelled by using the Gram-Schmidt procedure to ensure that 
the column vectors of the matrix [u.+l}B~+ 1 are themselves orthogonal to one another. The 
process is repeated by applying H to [u.+l} and so on. 

The columns of lug} are vectors which form a new basis in which the Hamiltonian is block 
tri-diagonal, that is, the transformed Hamiltonian matrix can be divided into 2x2 blocks , 
only the diagonal and subdiagonal blocks are non-zero. 

We now wish to find solutions of the time-dependent Schrbdinger equation H e  = E r  and 
from them the scattering matrix for the disordered region. The solutions to the Schr6dinger 
equation in the leads are Bloch waves of the form ~ exp(=l=inO)ln } where cos(0) = E/2V'. Now 
in the input lead there will be a incoming wave of the form ]~exp(+inO)ln ) and a reflected 
wave of the form ~rezp(- inO)ln ) . In the output lead there wiU be a transmitted wave 

tezp(-inO)ln} 2 , r and t being reflection and transmission coefficients for wave incident with 
energy E. The problem , then is to solve the Schrbdinger equation in the disordered region 
with these boundary condition. The solution of the Schrbdinger equation r can be specified by 
{r  the projection of r on the basis orbitals r = ~ .  r  The boundary condition can be 
represented in terms of r  as 

Each r  can be written as 

= {e p(ie)+ r=p(-io)  
r \ te ,pC-ie) ) 

r  = X.r + Y.r 

where X,~ and Y,~ are 2 x 2 matrices. By operating with the Hamiltonian on the r with the 
Schr6dinger equation , we find a three-term recurrance relation for the X, and Y,  indentical 
to equation (2.1) with EI replacing H and also satisfying the boundary condition Xo = I ,  X1 
= 0 a n d Y 0 = 0 , Y 1  = 1 .  

Since the vector recursion is basically a change of basis, the rank of the transformed Hamil- 
tonian remains unchanged. The number of new basis sets is therefore N since we have clumped 
the old basis sets two by two. This introduces additional boundary condition which can be 
expressed in terms of XN+I and YN+I as 

2The process of vector recursion converts the lattice into an one-dimensional chain , which is then folded 
to clump two si~es of the chain together in order to define the basis set {]u,}} . For a chain with folded 
configuration ( Figure. 2.1 ) both the reflected and the transmitted wave move in opposite direction to that of 
the incident wave. 
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Figure 2.1: The ch&in formed out of vector recursion process (reproduced from the ref. (Godin 
&nd H&ydock ,1988)) 
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XN+lr + YN+ r = 0 

The above equatio n gives two linear equations which can be solved for t and r in terms of 
XN+I , YN+I and exp(+i8) , If we now interchange the incoming and outgoing leads, we get 
a similar pair of equations for r' and t ' ,  the transmission and reflection co-efficients for waves 
incident from lead 2. Time reversal symmetry demands that t must be same for waves of the 
same energy incident from either lead so that t = t'. Solving these equations for scattering 
S-matrix for the disordered region one have 

(2.2) 

Generalization of this methodology for the multi-lead case with M number of incoming leads 
and M number of outgoing leads is now a trivial task. The representation of new vector basis 
states formed out of repeat�9 application of recurrence relation are now matrices of sizes 
2Nx2M with the first member chosen as lul} = (]il) ,  li2),..., JIM), Iol), Io2),..., IOM)), where 
Iik) and Io~,) are the position at which the incoming and outgoing leads attach to the system. 
The 2Mx2M matrices A, and B, are the block tridiagonal representations of the Hamiltonian 
in the new basis. The termination of the new basis sets occur after v = N/M steps with the 
scattering S-matrix given by 

S = 

r l l  r 12  � 9  P1M t l  t �9 2M,1  �9 " �9 t 2 M , M  

: : : : : 

r M , 1  PM,2 r M ,  M t p ~l �9 ' ' M + I , 1  �9 �9 ' M + I , M  

t M + l , 1  $M+1,2  t M + I , M  r I t �9 " ' M,1  " " " r M , M  

: : : : : 

t2M,1 t2M,2  . ' .  ~ 2 M , M  r i l l  " . .  r t l M  

(2.3) 

We denote the reflection coefficient of the wavelet coming in from i-th incoming lead and 
reflected into the j-th incoming lead by rij(E) and transmission coefficient of the same wavelet 
transmitted into the j '-th outgoing lead as t~/ . {r'ij , t'ij} denote reflection and transmission 
coefficients with interchanged incoming and outgoing leads�9 The reflectance into the i-th in- 
coming lead is thus given b y / ~ ( E )  = ~ j e l  Irij(E)[ 2 and similarly the transmittance the i-th 
outgoing lead is given by T~(E) = ~.jeo [tij(E)l 2 Here I and O denotes the sets of incoming 
and outgoing leads�9 The Landauer formula ( Imry , 1986) then gives the zero-temperature 
conductance as 
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where vi is the velocity of the electrons carrying current in the i -th lead and ~ is the 
chemical potential of the system. In our case all the leads are equivalent so that vl = VF, the 
Fermi velocity of the system. The above equation then reduces to 

e ) MT(~) (2.4) 
a =  R(,) 

T(E) = EiWi(E) and R(E) = Eil~(E) are the total transmittance and reflectance. The 
resistance p = 1/G is given by 

P = e 2 M T ( p )  

Determination Of Wavefunction.  

Wavefunction or eigenstate at a given energy E is the solution of the Schrbdinger equation 
r specified in reims of projection {r of r on basis orbitals [u,~} 

r = E r 

The knowledge about the total wavefunction of the system involves information about the 
probability amplitude at each site of the two dimensional lattice. Once the reflection and 
transmission co-efficient at the particular eigen energy are known, the probability amplitude 
r at n-th new vector basis [un} can be obtained utilising the relation 

= x r + Y r 

Now each component on the n-th new vector basis is a linear combination of the original 
tight-binding basis vectors so that [u~} = ~ ,  C~(i)[i) where C~(i) denotes the co-efficient of 
linear combination and [u~) denotes 1-th column of the n-th member of new basis sets {[u,}) 

If r denotes the 1-th row of the projection amplitude then the wavefunction amplitude at 
the i-th lattice site will be given by ~,~ Et r z . 

2.4.2 Block Spin A n a l o g y  and Scal ing In T w o - d i m e n s i o n a l  An-  
derson M o d e l  

The methodology we employed for obtaining the scaling properties of resistance in a two- 
dimensional Anderson model closely resembles the real space renormalisation idea in the sense 
that it involves croase graining but not followed by rescaling at each iteration step. We shall 
divide the two dimensional square lattice into rectangular blocks M1 x M2 in size as shown in 
Figure. 2.2(a). For an isolated block as shown in Figure. 2.2(b), the bonds attaching it to the 
rest of the system appear as input and output leads into the block. The input leads bring in 
electronic wave from the rest of the system into the block ~ the blocks then scatters the wave 
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the output leads take the wave away from the block and it re-enters back into the rest of 
the system. The vector recursion technique gives the scattering S-matrix which describes the 
scattering characteristic of the block in terms of its reflectance, transmittance or resistance. 
For energy conserving system with no inelastic scattering these three quantities are dependent. 
The crucial step is to obtain an equivalent single-site scatterer of the same resistance as that of 
the block. This single site scatterer is characterized by an effective Hamiltonian with diagonal 
disorder ~. Since we are interested only in the resistance as a physically observable quantity and 
not in the detailed wavefunction characteristic within the system, this equivalence is justified. 
In analogy with the block spin idea where we replace a block of spins by a single effective spin 
and effective coupling such that the free energy remains invariant, here we replace a block of 
scatterers by a single effective scatterer with an effective diagonal Hamiltonian term ~, such 
that the resistances of the block and scatterer remains invariant. 

To obtain ~ we proceed as follows: to the effective single-site scatterer we attach two semi- 
infinite, perfectly conducting leads ( Figure. 2:2(c) ) in exact analogy to the vector recursion 
procedure described earlier. In this simple problem , the vector recursion equations can be 
solved by hand to obtain 

B1 = (V '  0 o) 

-V' 
0 

(2.5) 

so that the S-matrix is given by 

s = - { s l x 2  + s y e p(-i0)} -l{,Blx2 + B y e p(ie)} -1 

The various symbols have already been introduced earlier. The reflection and transmission 
co-effidents are given by 

r(E) = Sll = (E - ~)Y'ezp(-18) + V ' E e z p ( - i S )  - (E - t )E 
A 

t ( E ) - S 2 ~ = t ; v  ; ~ ,2. '2s.n_j 
A 



Quantum Mechanical Transport through Disordered Media 19 

F , - - ' -  T - - - -  "l 
I I I 
i i I 

-?C ' .  . . . .  ', I , j .  

l l I . 

I I I L'L-~_I, ~'~'~_,~ 

Ca) (b) 

_ I A _ - I  - 
i " - . I  - 

(c) 

Figure 2.2: (a) Partition of the lattice into blocks (b) An isolated block,  renormalization of the 
block to a single scatter and the renormalized lattice (c) The single-site scatterer with ordered 
leads 
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with 
A = det{,B~X2 + B~Y=ezp(-iO)} 

Finally the relationship between the effective diagonal term ~ and resistance p defined in 
units of ~-~ is given by 

= qp(4v o _ z2) 

The newly defined effective Hamiltonian then takes the form 

m z  = E  ,l*>ql + E E  wl*><sl 
I I J 

Since the different blocks involve random Hamiltonian element, the new effective diagonal terms 
{~I} are also random. The distribution of these ~x may be determined from the distribution of 
the block resistances. The above procedure may now be iterated by dividing the renormalised 
lattice into blocks and reducing these by an identical procedure, obtaining a second level set 
{gz}. This will reduce the sample to a size N/(M1M2) 2 . At each stage of this procedure, the 
vector recursion will always involve a fixed size M1 x M2 but will give information about systems 
of increasingly larger sizes. 

2.4.3 Detection Of Stochastic Resonances and Multifractal Anal- 
ysis in Two-dimensional Qautum Percolation Model 

(i) Detection Of Stochastic  Resonances.  

We choose 2-dimensional quantum percolation Hamiltonian as the model system for present 
study on stochastic resonances. The model as already discussed is described by tight-binding 
Hamiltonian with random occupancy of nearest neighbour bonds. The underlying lattice struc- 
ture ( Figure. 2.3 ) suggests that we have indeed looked upon the problem of maze conduction 
quantum mechanically. 

The conduction here is not mainly along a single path of favorable links , as expected 
classically. The percolation clusters are topologically complicated and provide many parallel 
multiply connected pathways for the current . Because of coherent backscattering from these 
paths one expects electronic states to be localized in two dimensional quantum percolation 
model and numerical studies reveal that it is indeed the case. We measure the transmittance 
of such a random maze using the vector recursion technique. The location of the stochastic 
resonances has to be carefully carried out. We first plot the transmittance vs energy for a small 
system with sufficiently fine energy mesh. We locate a transparent state. We next increase the 
systems size, refine the energy mesh and scan the neighbourhood of the state energy. If the 
state was a localized state with a localization domain larger than the original system size, the 
transmittance in the enlarged size becomes smaller. If not, we again increase the size and further 
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Figure 2.3: Figure showing the connected cluster ( q = 0.3) characterized by a backbone and 
dangling bonds 
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refine the energy mesh and continue our search. There seems to exist a distinction between 
the high transmitting states arising out of finite size effect ( states whose transmittance rapidly 
falls to zero with increase of system size) and the few probabilistically exceptional resonant 
states. The positions of the resonant states with transmittance nearly equal to unity remains 
almost fixed in energy scale with the increase of size. However the resonance widths rapidly 
decrease with increasing size so that we have to carefully search for them in suitably refined 
energy meshes. Once we have located a resonant state, the wavefunction corresponding to its 
energy is obtained by repeating the vector recursion with the known values of the reflection 
and transmission coefficients. 

(ii) Mul t l f r ac t a l  Analysis .  

Multifractal analysis provides a framework of studying the internal geometric structure of 
the wavefunction amplitudes. 

Different moments of a set may scale in different ways and one may therefore describe the set 
in terms of a continuous set of scaling indices. The set is then called multi-fractal. This point 
of view suggests new ways of computing fractal properties of sets. It has been used to describe 
strange attractors, fully developed turbulance, diffusion-limited aggregation etc (Halsey et. al. 
1986). We will use this approach of describing statistical properties of measures to investigate 
the internal structure of wavefunction amplitudes in a random tight-binding model, clearly 
differentiating between a localized state and a necklace state as suggested by Pendry. 

The principal step in multifractal analysis is to obtain a -  f(a) singularity spectrum. The a -  
f(a) singularity spectrum provides a mathematically precise and naturally intutive description 
of multifractal measure in terms of interwoven sets with singularity strength a ,  whose Hausdroff 
dimension is f(a). 

Determination of a -  f(a) singularity spectrum is based on the box counting procedure . 
For our case we devide the system into N boxes of linear size L and choose the probability 
distribution of the wavefunction in the k-th box 

I kl 2 
Pk(L) = Ek 

as a suitable measure. The length L is so chosen that it encloses a single site. The local 
singularity strength ak can then be defined as Pk(L) ,~ L ~'k. If we count the number of boxes 
N(a) where the probability Pk has singurality strength between a and a + d ~ ,  then f(a) can 
be defined as the fractal dimension of the set of boxes with singularity strength a given by N(a) 
~ L -f(a) The generallzed dimensions D~ which correspond to scaling exponents for the q-th 
moments of the measure provide an alternative description of the singularity measure. They 
are defined as 

1 logEkP (n) 
D~ = lim 

q -  1 N.-,~ logL 

f(e) and Dq are smooth functions of a and q .  f(a) is simply related to r(q) = ( q -  1)Dq 
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by a Legendre transformation. This relationship reflects the deep connection with the ther- 
modynamic formalism of equilibrium statistical mechanics where r(q) and q are conjugate 
thermodynamic variables of f(~) and a . In this case the Dq curves can be easily transformed 
into f(a) curves. Such an operation involves first smoothing the Dq curve and then Legendre 
transforming. This has the disadvantage of the fact that error bars from the smoothening pro- 
cedure make the estimate of error bars from the data itself more difficult. A direct evaluation 
of a - f(a) spectrum without restoring to the intermediate Legendre transform has been pro- 
vided by Chhabra and Jensen (1989). This is done by constructing a one-parameter family of 
normalized measures #(q) with 

,k(q,L)= Ek{Pk(L))q 

The parameter q provides a microscope for exploring different regions of the singular mea- 
sure. For q > 1 , #(q) amplifies the more singular regions of the measure , for q < 1 it 
accentuates the less singular regions and for q --- 1 , #(1) replicates the original measure. The 
Hausdorff dimension and the average singularity strength of the measure theoretic support #(q) 
are then given by 

f(q) --lirnN..,c~,k#k(q,L)l~ 
logL 

Y']~k #k(q, JL )Iog{ Pk( L ) } 
(~(q) = limN-,r 

logL 

This provides a relationship between Hausdorff dimension f and average singularity strength 
a as implicit function of q. 

2.5 R E S U L T S  A N D  D I S C U S S I O N  

2.5.1 Scaling Of Resistance In The Two Dimens ional  Anderson 
Model  

The present study of scaling of resistance in the two-dimensional Anderson model is based 
on determination of the Hamiltonian with effective single site scatterers. Figure 2.4 shows the 
distribution of the diagonal Hamiltonian elements of the effective single site scatterers at the end 
of the first four block renormalizations. Since the Hamiltonian elements of the individual blocks 
are random the effective scatterer elements ~} are themselves random, Their distribution is 
obtained by running the vector recursion upto 500 configurations of the block and obtaining 
the distribution as histograms. This distribution is used in the next iteration to generate the 
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effective Hamiltonians . Several features of the distributions may be commented upon. An 
examination of the relationship between the resistance and effective on-site term of the single 
scatterer indicate that ~ and -~ both give the same resistance, making the distribution of {~} 
symetric about the origin. In Figure. 2.4 we have shown only the positive part of ~ axis. It is 
to be noted that with each iteration a hole of increasing width opens up at the origin although 
at the starting point there was no hole at the center of the distribution. The initial uniform 
distribution centered at the origin shows that there is finite probability that e takes the value 
in the neighbourhood of zero. The probability that a number of e-values are simultaneously 
zero is very small. This probability becomes progressively smaller as we go on iterating the 
renormalization procedure. After each stage of renormalization which amounts to working 
with larger sizes , the width of the distribution of on-site term increases indicating the state 
under study to be localized with the resistance exhibiting non-ohmic behaviour of increment 
with system size. For the scaling calculations we have used blocks of sizes 48,120 and 224. 
Very small blocks are not used as the effect of quantum coherence which is the basic cause of 
localization may not effectively be demonstrated. Very large blocks also pose problems since 
their resistances become too large for numerical stability. 

The strength of the disorder is measured by the quantity ~ = W/B where B is the band 
width. We first study the case of a moderate disorder ~ = 0.5 . Figure 2.5 shows the plot of 
(logp) vs log(size). The points are the numerical values. These correspond to blocks of sizes 
48,482 , 484 and 488 , 112 and 1122 , 224 and 2247 . 

The figure also shows the least square fitted striaght line , appropriate for a power law 
dependence of p on size. Figure 2.6 shows a similar plot but for disorders varying from ~ = 
6.25• -4 to 6 = 12.5. 

As expected the power a defined by p(N) = poN ~ is a function of disorder parameter 6 
and increases with the disorder strength. The curve 6 = 0.0373a ~ is the best fit through the 
data points and its extrapolation to very low disorder is shown in Figure. 2.7. 

In Figure. 2.8(a) we plot resistance vs log(N) for a = 1.796• -4 which corrsponds to a 
disorder parameter 6 = 5.0 x 10 -4. Throughout the size range quoted, the resistance variation 
at this low disorder is consistent with the logarithmic scaling. Similar plot for ~ = 0.037 ( a 
= 1) ( Figure. 2.8(b)) show deviation from the logarithmic form. All the results quoted above 
are for energy E -- 0.5 , that is, energy near the band center. 

The above study indicates that for states near the center of the band ,  the nature of local- 
ization appears to be of power law type which extrapolates to logarithmic behaviour for low 
enough disorder. Though such a power law behaviour is not in conformity with the scaling the- 
ory of localization which predicts universal exponential localization in 2D systems is supported 
by other analytic and numerical works. Analytic works (Haydock , 1981,1986) based on per- 
turbative calculation using the recursion method suggest different regimes of exponential and 
power law localization, indicating a transition between weakly and strongly insulative states. 
This analytic result also seems to be confirmed by recent numerical work of Godin and Haydock 
(1991) which reports presence of weakly localized states near the band center and exponentially 
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localized states near the band edge, in conformity with previous numerical studies of Picard 
and Sharma (1981) and that of Pastwasld at. al (1983). 

2.5.2 Study  Of Stochastic  Resonances In The  Two Dimens ional  
Quantum Percolation Model  

For an infinite two-dimensional disordered systemall states are expected to be localized with 
the critical threshold probability qc (the probability below which states are extended) equal 
to 0. However, for a finite lattice one may have a threshold q0 > 0 at which the localization 
length becomes of the order of system size length. For the present work, in order to assure 
that we belong to the localized regime of the spectrum, we have taken q > qo �9 Information 
about q0 has been obtained from work on finite sized scaling ( Mookerjee at. al. , 1992). 
On the other hand, since we are well below the classical threshold q~Z,which is 0.5 for two- 
dimensional bond percolation model ,there is always a system spanning duster, characterized 
by a backbone and dangling bonds between the two leads. Figure 2.9(a) and 2.9(b) show the 
plot of transmittance versus energy for a square maze of sizes 20x20 and 30x30 respectively 
at bond breaking probability q = 0.3. 

A comparison of the transmittance vs. energy plot for sizes 20x20 and 30x30 reveal that 
transparent states arising due to finite size effect in size 20• have fallen to zero in size 30• 
These are attributed to localized states with localization domains larger than the system size. 
On the other hand ,  at some specific energies the transmittance remain close to 1 consistently 
both at size 20x20 and 30x30, along with a small shift in position. We identify these states to 
be the stochastic resonances. Figure 2.10 shows a resolved plot of the transmittance vs energy 
near one such resonance for the size 30• 

Fig 2.11(a) and 2.11(b) are plots of the wavefunction squared amplitudes and its contour 
map for a square lattice of size 30 x 30 at a resonant energy E -- -0.651. The figure clearly 
indicates that the wavefunction is not centrally localized. Rather it seems that the state is like 
a Pendry necklace state with more than one local minimum spaced evenly across the sample. 
They are more like quasi-extended or clumped states, distinct from the usual extended (Bloch) 
states. Obviously such states are of statistical origin, and one finds very few of them in an 
ensemble of several thousand. 

It is also evident that the wavefunction squared amplitudes are far being isotropic.The 
wavefunction plot with directional averaging essentially misses this non-isotropic character , 
givhg rise to an exponentially decaying nature from the region where it has its highest value. 
This is clearly shown in Figure. 2.12 , where we have plotted the logarithm of direction 
averaged probability density as a function of distance in order to compare our result with that 
of Zhang and Sheng (1991). The straight line fit, similar to Zhang and Sheng suggests the 
exponential decay. Zhang and Sheng's identification of resonances as Azbel resonances based 
o n  this decaying nature therefore seems to be an artifact of the directional averaging procedure. 
To compare the resonating states with a localized state we have plotted in Figure 2.13(a) and 



Quantum Mechanical Transport through Disordered Media 31 

i ; 1,00 

W 

I--4 

0~0 

0 .70  

(a) 

" •  " . _  

i - ' 7 " ~  ~~ ~ ~ ~: ~ ~ 1 7 6  ....... ~:-:"~o o 

O 8 0  

0 
Z 

O0 
Z 

r~ 

"0!0 

(b) 

4120 

[ 

. 1 .  1 . . . . . . .  . . . . . . . . .  

020 0.40 

l.O0 

. . . . . . . . .  a . . . . .  I , ,A..A..  

E/v '  , 

Figure 2.9: Plot of transmittance vs energy for a square lattice of size (a) 20 x 20 (b) 30 x 30 
a t q -  0.3 



Quantum Mechanical Transport through Disordered Media 32 

1.00 

I).90 

0~0 

LLJ 0.70 

Z 
< o6o 

l----q 
~- o50 

o3 
Z < 0,40 
rr- 

03o 

020 

0.:I.0 

0.00 
-0.660 

y 
-0.659 -0.658 -0.656 -0.655 - 0 .654  -0.6.53 -0.652 "0.650 -0.649 -.0.64e 

E/v' 

Figure 2.10: Resolved plot of transmittance vs energy for size 30 x 30 in the neighbourhood of 
a resonance 



Quantum Mechanical Transport through Disordered Media 33 

(a) 

@ 
% 

�9 it , . .  v - - - - .  I 

Figure 2.11: (a) Wavefunction squared amplitude vs site co-ordinates (b) contour diagram of 
the wavefunction squared amplitude over the sample for resonating state ( q = 0.3, E = -0.651) 
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Figure 2.12: Plot of the directionality averaged probability density I (r) vs r measured in units 
of lattice distance a ,  from the site with maximum probability along with the best linear fit for 
the resonating state shown in Figure. 2.11 
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Figure 2.13: (a)Wavefunction squared amplitude vs site co-ordinates (b) contour, diagram of 
the wavefunction squared amplitude over the sample for the localized state ( q -- 0.3, E = 0.5) 



Quantum Mechanical Transport throttgh Disordered Media 36 

'~g.O 

0 
h- 

237.8 

206.6 

175.4 

1442 

113.0 

\ 

81.8 

~ 6  

19.4 

-1.l,8 

-433 -'-" 
-40.0 

\ 

\ 

-320 -24.0 -16.0 -EO EO &O lEO 24.0 320 40~ 

0 
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(b) the wavefunction squared amplitudes and the contour map of a typical localized state (T(E) 
~ 10 -~~ for a lattice of size 30 x 30 and E = 0.5. 

In order to confirm our conclusion we have carried out a multifractal analysis on the wave- 
function which yield information about the internal structure of the resonating states, clearly 
differentiating between a exponentially localized state and necklace state. Figure 2.14 shows 
r(Q) vs Q plot for the localized and resonant states. 

A simple homogeneous fractal ( a state having a typical power law behaviour with a single 
exponent) can be completely characterized by two of the moments, hence r(Q) vs Q curve should 
be a straight line. The deviation from linear behaviour in Fig 2.14 suggests that the resonating 
as well as the localized state is a multifractal entity characterized by several powers. Physically 
the states with several singularities scale differently kccording to their mass exponents r(Q), 
hence each subset of the measure is itself a fractal with its own fractal dimension and the 
entire state therefore does not possess self-similarity. The similarity dimension Do is almost 2 
within our calculational inaccuracies. The most transparent information regarding the nature 
of the wavefunctions are obtained from the singularity spectrum (f(a) vs a) plots. A typical 
singularity spectrum for an extended state is a single point, characteristic of a single mass 
exponent. For an exponentially localized (fast-decaying) state we may assume that only a few 
boxes contribute significantly. From the defining equations it is easy to see that the spectrum 
will be clustered around the points a -- 0, f(a) -- 0 and a --. c~, f(~) - f(~),nax .However, 
if we take a finite sized system this clustering may not be evident. To characterize a localized 
state, therefore, we should study the way in which the singularity spectrum behaves as the size 
of the system increases. 

Figure 2.15 is a plot of the singularity spectrum for the resonating and localized states for 
the largest size with Q values from -40 to 40 in steps of 0.8. The figure shows multifractai 
behaviour for both the localized and resonating states. It appears that the localized state may 
not be exponentially localized and that a number of boxes that contribute to the box counting 
seems to be much larger than in the case of typically exponentially localized states. However, 
the spectral width (a,,~= - a,,~,~) for the localized state is much larger as compared to that for 
the resonating state. This result can be interpreted in the following way : large values of 
indicate that probabilities whose scaling is characterized by a are themselves small. Hence in 
the case of localized states, boxes with low probability have non-zero contribution, suggesting 
the decaying nature of the localized states. However, for the resonating state the probability 
amplitude does not decay over large length scales. This supports the clumped nature of the 
resonating state, where, as a result of sufficient overlap between the individual localized states 
with centres of localization at different sites (beads of the necklace) the probability value cannot 
be very low. Large widths for the localized states were also observed in incommensurate chains 
by Thakur e~.a/(1989). 

Since our investigations are restricted to finite sample sizes, we have carried out, as dis- 
cussed earlier, a study of the way in which the singularity spectrum behaves with sample size. 
Figure 2.16(a) and (b) show the singurality spectrum for different sample sizes for localized and 
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Figure 2.16: The singularity spectrum of (a) the localized state and (b) the resonating state at 
various system sizes : 20 x 20 (solid line), 30 x 30 (dotted line ) ,  40 x 40 (dashed line ) 
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resonating states respectively. The spectrum for the localized states has a very wide support, 
however the edges oscillate with size, as opposed to a,~a~ diverging with system size. This is 
a sure indication that the localized state (at the band centre) has a slower than exponential 
decay. The spectrum for the resonant state has a much narrower support and the edges are 
almost identical. 

2.6 S U M M A R Y  

To summarize , our numerical study employing vector recursion method on 2-dlmenslonal 
Anderson model indicate presence of power law localized states with power decreasing with de- 
crease of disorder strength, for energies near the band centre of the spectrum. In 2-dimensional 
Quantum Percolation model with all states expected to be localized we identify presence of some 
probabilistically exceptional resonating states characterized by high transmittance value. The 
determination of wavefunction amplitudes corresponding to these states reveal that they are 
formed out of superposition of localized states with centres of localization close enough to each 
other. This neck/ace like nature of resonating states has been verified by mulifractal analysis 
based on box counting procedure. 



Chapter 3 

AUGMENTED SPACE RECURSIVE 

APPROACH FOR 

CONFIGURATION AVERAGING 
IN DISORDERED ALLOYS * 

3.1 I N T R O D U C T I O N .  

In the modern world metallic alloys are used in a enormous variety of applications. The 
reasons for this ubiquitous use revolve around the possibility of modifying the properties - 
strength ~ ductility ~ corrosion, resistance, thermal and electrical properties to meet specific 
engineering requirements. Because most commercial alloys are complex multiphase mixtures 
, it is important to have an understanding of all of the possible alloy phases that can occur : 
pure metals, possible ordered intermetallic compounds and possible disordered solid solutions. 

Considerable effort has been devoted to the theoretical study of the electronic structure of 
binary disordered alloys. Indeed these investigations present a two-fold interest : first, from the 
fundamental point of view, the understanding of the electronic structure of disordered systems 
has long remained a challenge ;and second, by their possible applications in metallurgy. The 
theory of electronic structure calculations in disordered alloys pose a challenge to theoretical 
physicists . Because of the lack of translational symmetry , Bloch's theorem and standard 
band structure method remain no longer applicable. As a result Bloch quantum number k no 
longer remain a good quantum number and smearing out of van Hove singuralities in electronic 
density of states occur. The situation is further complicated by the fact that in addition to an 
accurate electronic structure description of components , the electronic structure calculation 

1 * Part of this chapter has been published in J.Phys.Condens.Matter 6 L245 (1994) 

41 



Augmented Space Recursire Approach .. .  42 

in disordered alloy systems requires an appropriate averaging scheme for describing averaging 
over random disorder configurations. 

In the last decade many calculations on disordered alloys ,based on semi-emperical tight- 
binding Hamiltonians, have been reported. In spite of its encouraging success the electronic 
structure calculations based on the semi-ernperical tight-binding Hamiltonians has some un- 
derlying approximations which are often unjustified (Pettifor,1992). It calls the need for first- 
principle theories of disordered alloy systems. During the last few years it has become clear that 
density functional theory (DFT) in the local density approximation (LDA) (Kohn and Sham 
,1965 ; Hohenberg and Kohn, 1964) provides a sound, ~b-initio theoretical basis for calculating 
ground state properties of pure metals and ordered compounds. Consequently DFT-LDA pro- 
vides a logical starting point for relevent disordered solid solution also. A number of electronic 
structure methods within the frame-work of DFT-LDA exists in literature. While Korringa- 
Kohn-Rostoker (KKR) method (Korringa ,1947 ; Kohn and Rostoker, 1954) and Augmented 
Plane Wave (APW) method (Slater, 1937) provides the most accurate electronic structure 
description of solid , their energy linearized version , linearized mumn-tin orbital (LMTO) 
method (Andersen and Jepsen, 1984) and linearized augmented plane wave (LAPW) method 
(Andersen, 1975) are also widely applied because of the better computer tractability compared 
to their parent methods. The successful theoretical tools for understanding the electronic 
properties of disordered alloys is based on these first-principle electronic structure techniques 
in conjunction with mean field approaches like single site coherent potential approximation 
(CPA) (Soven,1967;Taylor,1967) for describing configuration averaging, super-cell methods ( 
Lu et. al. , 1991a) with repeated cells whose sites are occupied by component atoms so as 
to model the random infinite alloy and direct configuration averaging over limited number of 
configurations (Bose et. aL,1992) to get an average picture. All of these methods have their 
own limitations and though applicable for a particular class of alloy systems may fail in other 
cases. It is therefore necessary to have a first-principle alloy theory which will be applicable to 
all possible alloy systems. 

In the following sections we propose and implement a method of electronic structure descrip- 
tion of random binary alloys within the framework of tight-binding LMTO based on augmented 
space formalism (ASF)introduced by Mookerjee (1973), coupled with the recursion method of 
Haydock, Heine and Kelly (1972). This method retains the Herglotz properties of the configu- 
ration averaged Green function 2 . The coupling to the recursion method allows effects of quite 
large clusters to be taken into account. Since the recursion method is intrinsically a multi-site 
one, such a methodology will have wide applicability in treating features involving more than 
one site like the effect of clustering, short-range order, local lattice distorsion etc.. 

Describing the random alloy Hamiltonian by a tight-binding one , disorder can be in on- 
site atomic levels as well as in off-diagonal transfer terms. In some alloys ~here is strong 
randomness both in the atomic levels and in the transfer integrals. It has been shown that for 

~A complex function f(z) is said to be Hergtotz if (i) the singularities of f(z) lie on the real z axis (ii) Im f(z) 
<_ 0 for Im z > 0 , Im f(z) _> O. for Im z < 0 and (iii) f(z)~ 1/z as z ~ oo on the real axis 
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such alloys the constituents come from the different rows of the periodic table, as a result there 
exists an appreciable amount of mismatch between atomic radii of the constituents. This non 
isochoridty in turn results in distortion of the lattice deviating from perfect lattice structure. 
The relaxation of ideal lattice has been verified by extended x-ray absorption fine structure 
(EXAFS) experiment ( Weightman et. al. ,1987). Since lattice relaxation introduces a kind 
of positional disorder it essentially brings about disorder in structure matrix describing the 
geometry of the lattice, in addition to disorder in scattering properties of potential leading to 
complicated off-diagonal disorder. An application of augmented space recursive method to such 
n o n  isochoric alloys with predominant lattice relaxation effect has been made in the subsequent 
section. 

3.2 M E T H O D O L O G Y  

3.2.1 Descript ion of Electronic Structure 

LMTO 

The theory of electronic states in infinite crystals has for many years been of great value 
in the quest for a better understanding of the chemical and physical properties of solid state 
materials. Electrons at the microscopic level govern the behaviour of these materials and good 
description of many macroscopic properties are obtained in terms of stationary states of the 
electronic system. This is because of the well-known approximation of Born-Oppenheimer 
which states that nuclei and the electrons to a good approximation may be treated separately. 

The electronic structure problem consistes in finding the eigenstates for an infinite number 
of interacting fermlons and immediately calls for further approximation. The most important of 
these is the one-electron approximation which describes each electron as an independent particle 
moving in the mean field of the other electrons plus the field of the nuclei. At present the most 
satisfactory foundation of the one electron picture is provided by the local approximation to 
the Hohenberg-Kohn-Sham density functional formalism (Kohn and Sham ,1965 ; Hohenberg 
and Kohn , 1964). The local-density approximation (LDA) leads to an effective one electron 
potential which is a function of local electron density. Since the density in turn depends on 
the solutions of the effective one electron SchrSdinger equation one is forced to perform self- 
consistent electronic structure calculations. 

The traditional methods in this context may be divided into those which express the wave- 
functions as linear combinations of some fixed basis functions say plane waves or atomic orbitals 
and those like the cellular, APW and KKR methods (Callaway, 1964) which employ matching 
of partial waves. In the method of fixed basis sets by standard variation techniques one obtain 
a set of linear equation given by 

=0 (3.1) 
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in terms of the Hamiltonian H and overlap matrix O to determine the eigenvalues E and the 
expansion coefficients a ,  while the method of partial waves results in solving set of equations 
of the form, 

M(E).b=O (3.2) 

In contrast to equation (3.1) which is polynomial in E, the secular equation (3.2) has a 
complicated non-linear energy dependence. 

The partial wave methods do have advantages. Firstly , they provide solutions of arbi- 
trary accuracy for a muffin-tin potential and for close packed systems , this makes them far 
more accurate than the traditional fixed basis methods. Secondly the information about the 
potential enters only via a few functions of energy. However it has the disadvantage of being 
computationally heavy, the one electron energies E~ must be found individually by tracing the 
roots of the determinant of M as a function of E. 

The linear methods devised by Andersen (1975) are characterized by using fixed basis func- 
tions constructed from partial waves and their first energy derivatives obtained within the 
muffin tin approximation to the potential. These methods therefore lead to secular equations 
like (3.1) rather than (3.2). The linear methods thus combine the desirable features of the 
fixed basis and partial wave methods. In the LMTO (Andersenand Jepsen, 1984) an energy 
dependent basis set Xm~(r) is derived from the energy dependent partial waves in the form of 
muir-tin orbitals. 

The set is constructed such that it is 

(a) appropriate to the one electron effective potential V(r) of the solid 

(b) as complete as possible in the entire space 

(e) continuous and singly differentiable in all space 

The transformation of this method for self-consistent calculations of the electronic structure 
of solids into a first-principles tight-binding method (TB-LMTO) is particularly useful due to 
localized nature of basis functions, extending the applicability of this methodology to disordered 
alloys both metallic and semiconductor or solid surfaces and interfaces. Literature for extensive 
description for this methodology exists (Andersen et. a/.,1985 ; Das ,1992) and we only cover 
the salient features. 

In the present work , we use the atomic sphere approximation (ASA) where the sphere is 
divided into Wigner-Seitz (WS) cells which are then approximated by WS spheres of the same 
volume. In this approximation the information needed to set up the Hamiltonian can be divided 
into two independent parts. The first part is contained in the structure matrix which depends 
only on the structure and the positions of the atoms and not on the type of atoms occupying the 
sites. The second part of the information depends on the solution of the SchrSdinger equation 
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inside each inequivalent WS sphere with appropriate boundary conditions . This second part 
yields the so-called potential parameters for each site. 

Within the ASA, the LMTO basis functions have the foUowing form: 

RILl 

where L denotes collective angular momentum index (g m) . Atomic sites are given by the 
position vectors R with rR = r - R .  r is a product of a spherical harmonic and the solution 
CvRL(lrRI) to the radial wave equation inside the sphere centered at R for a certain energy 
Ev~ which is in principle arbitrary but in the energy range of interest. The functions Ca are 
the linear combinations of the r and their energy derivatives ~. The actual choice of how 
the linear combination is made determines the basis i. e. the label a. The functions r are 
normalized inside the spheres to which they are associated, r and ~ are orthogonal and they 
vanish, by definition outside their own sphere. The matrix h a is given by, 

h a = Ca _ + ( a)ms%Aa)m 

where C a and A a are the diagonal potential matrices. They depend on the potential inside 
the spheres, the representation ( a ) chosen and on the sphere radii. The band center parameter 
C ~ is given by. 

P~ 
C a = R. - pa(S.) 

and the band width parameter is given by 

V~'g = 1/Pa(E,) 

where pa(E) and pa(E) are the potential function and its energy derivative appropriate to 
the representation a. The relationship between the potential function pa (E), the representation 
matrix a and the logarithmic derivative Dz of the partial wave at sphere boundary is given by 

{ P a ( E ) } - '  = 2 ( 2 / +  l )~ - -~ j (~ ) -  - ~  

S ~ is the structure constant matrix depending on the representation and the geometrical 
arrangement of the atomic sites. In terms of the canonical structure constant S~ S a is given by 

S ~ = S~ - c~SO) -1 
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The representation is uniquely defined by the choice of the a matrix. All representation 
span the same Hilbert space, and there exists an exact transformation from one representation 
to another. Two particular representations are of interest the 7-representation and the tight- 
binding representation (TB) , ~ . The former is used in the construction of sp 3 hybrids for 
which it is convenient due to the orthogonality of the basis function. In the TB representation 
on the other hand the basis functions are very localized. The 7-representation Hamiltonian 
correct to second order in energy ( E - E~ ) is given by 

where E~ is the diagonal matrix containing the linearization energies. The overlap matrix in 
this representation is a unit ,diagonal matrix and therefore this representation is also referred 
to as the orthogonal representation. The transformation from the 7 to the ~ representation 
involves a scaling of the potential parameters C and A ,  calculation of the real space structure 
constants S ~. With the choice 

[ 0.3485 l = O(s) 
/~ = ~ 0.05303 s = 1 (p) (3.3) 

[0.010714 i = 2 ( d )  

the screened structure constants are found to be most localized with universal exponential 
decay in distance d measured in terms of WS radius w. 

for all the structures ( f.c.c, b.c.c, h.c.p etc. ) . In this representation the TB orbitals 
are extremely compact , extending only to nearest neighbour shell. For recursion calculation 
which is the methodology to be employed in the present s tudy,  it is practical to work in an 
orthogonal representation. At the same time short range is essential. With LMTO's it is then 
most practical to work in 7-representation and to express h ~ as the power series in the two 
center first order TB Hamiltonians which is of the form same as 7-representation Hamiltonian 
with C ~ , A ~ and S ~ replacing C ~ , A "t and S% This is given by 

h ~ = h ~ -  h~o~h ~ _ . . .  

where the matrix o ~ is diagonal in RL representation and its value is determined by the 
overlap of ~b and r . The truncation of the series at various orders allows us to work on 
the orthogonal representation but express the Hamiltonian in terms of parameters of t~he TB 
representation. It has been found ( Nowak et. al. , 1991 ) that in all practical calculations 
recursion with 

H (~) = E~ + h ~ 
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accurate to first order in ( E - Ev ) gives reasonable result. The second term (h o h) is necessary 
for systems with wide bands specially for s-p states. We have made uses of both Hamiltonian 
H (1) and H (1) - hob in our subsequent calculations. 

3.2.2 Configuration Averaging 

There are several approaches existing in literature for configuration averaging in disordered 
alloys with increasing degree of sophistication , such as the rigid band approximation ( Mott 
and Jones,1958), the virtual crystal approximation ( Nordheim, 1931), the single site coherent 
potential approximation (Soven, 1967;Taylor ,1967) and cluster coherent potential approxima- 
tions ( Mookerjee, 1987 ; Razee e~. al. , 1990 ; Datta et. al. ,1993).  

In the rigid band approximation the shape of the density of states is taken to be same 
throughout the concentration range with only shift in the position of Fermi energy due to change 
in filling while in virtual crystal approximation the actual random alloy potential is replaced by 
an average, periodic potential which is taken as the concentration weighted arithmatic mean of 
the the constituent's potential. The rigid band approximation gives crude picture of the effect 
of change in electron to atom ratio on alloying while the virtual crystal approximation serves as 
the starting point of more sophisticated iterative self-consistent approxiamtions. We shall first 
give brief review of the existing methods which are capable of capturing features characteristic 
of disorder. Then we shall present the augmented space recursion method , the methodology 
to be applied in the present study. 

Single Site Coheren t  Poten t ia l  Approximat ion .  

The single site coherent potential approximation (CPA) remains to date the main theoret- 
ical development in the study of the electronic structure of random systems . It maintains 
the analytic features of the exact Green function and interpolates correctly between several 
individual limiting cases of random binary alloys e. g. virtual crystal , atomic and dilute 
limits. 

The CPA is a single site mean field theory which allows the self-consistent determination 
of a translationally invariant effective medium that replaces the configurational average of the 
disordered material . The medium is determined through the condition that scattering of an 
impurity atom of any of the atom species vanishes on the average. 

We present a simple physical insight into the CPA within the frame work of parametrized 
tight-binding method.  

A random Hamiltonian in the tight-binding basis can be represented as, 

where Pi and T~j are projection and transfer operators respectively. 
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One defines an effective Hamiltonian 

In the single site CPA the self-energy ~ is same for all the sites i. e. 
~ij = V .  The idea is to find those I]0 (E) which will yield 

E~ (E) = Eo (E) and 

(G)  - ( z I -  Hel l )  -1 

( G ) indicates configuartion average of the random Green function G . For determination 
of self energy I]0 in single site CPA one embeds an exact potential e~ at the site i within the 
effective medium in such a way that it does not produce any extra scattering on the average. 

Hamiltonian with a n  impurity atom embedded at site i in otherwise periodic solid with 
on-site potential ~]0 is 

H~j! = H, H + (e~- ~o)Pi = HeSS + h 

The corresponding Green function is given by 

G ~ = G,fS + G,ysTGeH 

where 

r o(E))P  
i i 

The self-consistency condition demands that ( G ~ ) = G,f!  or ( t~ ) = 0 ,  leading to self 
consistent determination of ~o. For binary disorder where e~ can be eA with probability x and 
eB with probability (l-x) and ea - es - W one has 

xW 
= 1 - ( w -   )G,ss 

Such a mean field approach restores the periodicity of the solid and enables one to apply 
usual ~-space band structure techniques. 

The CPA in conjunction with first principles electronic structure calculations like KKR and 
LMTO has been employed widely for description of disordered alloys. 
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(i) KKR-CPA ( Stocks et. al. , 1977) - In the KKR-CPA the one electron random potentials 
which for simplicity is taken to be of non-overlapping muITm tin form are characterized 
at energy E by the partial wave scattering amplitudes f~,r. (E) where a refers to species 
and L stands for the angular momentum indices s and m. f~,L (E) 's are taken to be 
configuration independent, although for a self consistent calculation they do depend on 
the concentration. The reference medium is described within the single site CPA by an 
ordered array of effective scattering amplitudes fL (E) which are obtained as the solutions 
of the equation 

~"~ x~X a =0 (3.4) 

where x" is the concentration of the atoms of type cz in the alloy and 

X ~ = Am~(1 - @~176 (3.5) 

m a [ -- (ta) -I ] is the inverse of the scattering matrix, corresponding to atom of type a 
in the alloy with t ~ = - f~ / V~, Am a is the fluctuation of m ~ above the mean value and 
~00 is the site diagonal element of scattering path operator. 

In general, various quantities in equations (3.4) and (3.5)are matrices which possess 
non-vanishing matrix element between different angular momentum states. However for 
symetric muffin tin potentials and calculations carried out to I ~_ 2, the various matrices 
become diagonal, a feature which greatly facilitates the performance of numerical calcula- 
tions. The self-consistent nature of the KKR-CPA is clearly displayed in the observation 
that 

A m  a = ff'~ - -  m a 

and 

= iI(2,) s(k)]-' 

where S(k) denotes the KKR structure constants of the underlying lattice and the integral 
extends over the first brillouin zone of the reciprocal" lattice. 

(ii) LMTO-CPA ( Kudrnovsk~ and Drchal, 1990 ) - In LMTO-CPA one starts from the tight- 
binding LMTO Hamiltonian, the energy linearized version of KKR , in orthogonalized 
v-representation given by 

I-t~RL,,R, L, -- C'~RL6R.R,6LL , + (A'Y)I/2RLS~RL,R,L,(A'V)#~, (3.6) 
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R, R' denote atomic positions and L , L' denote collective angular momentum indices 
for (g,m) and (g',m'). The scattering properties the potential are characterized by the 
potential parameters, XRL = C~L, A~6 and 7RL ~ 

The Green function corresponding to the Hamiltonian (3.6) is 

GRL,I~L'(Z) "-- ( Z [ -  -1 H'r)RL,R,L, A'f -I12 ~-11 , , A'Y-ll 2 
= ~'RL [(P~(~) - ~, ,R~,R ~ ~R'L' 

P~ (z) = (z-C~)/A~ being the potential function in the muffin tin orbital representation 

7. 
For random binary alloys A,BI- ,  due to the random values of Am, and 7aL the Hamilto- 
nian have a complicated off-diagonal randomness. Consequently the CPA which can treat 
only the site-diagonal disorder cannot be readily applied. To define a CPA Kudrnovsk9 
and Drchal who were the first to apply the LMTO-CPA technique to random alloy sys- 
tems,  re-expressed G(z) in the general muffin tin orbital representation ~ in terms of site. 
diagonal random functions A~(z) and #~L(z) and an auxilary Green function g~,R'L' as 

GRL,R, L' = ~L(Z)&R'~LL' Jr #~L(Z)g~L,R,L,(Z)#~,L,(Z) 

g~,R',.' = {[P~(~)- S~ 

~ ( ~ )  = (~. .  - ~ ) , ~ ( ~ ) / n ; . ~ '  

and choose the most tight-binding representation aL = /~L so as to make the structure 
0 matrix SaL,R, L, non random. 

The random quantities P~L (z),  A~L (z) and # ~  (z) which enter the definition of G(z) 
are all site-diagonal quantitites. Their randomness can be expressed via occupation index 
~R q , q = A,B so that 

(O(z)) C~C'q(z){~X)6,~'%~' + ]C ~'~ ~ q'~' ~'~' = m. (z) (gn(z) )~.n.~. t 'L .  (z) 
q q,q' 

The configuration averaged auxiliary Green function (9~(z)) is given by 

{[~.~(~) - S~]-'}R.L. 
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where , the coherent potential function 7 ~ (z) , which for cubic lattices is a site and 
angular momentum diagonal matrix with elements ~L ~ (z) is determined from a set of 
coupled CPA equations: 

r = l l g ~ ,  ([P~(z)- S~(kll-')L L 
k 

Finally the configuration averaged Green function is written in terms of configuration 
average of the auxiliary Green function as 

<G(z))~,~,L, = A{(z)6~,6~L, + M~(.)(g~(*))~,R,L,M~,(.) 

with 

A~Cz) = (~(~))  + [z~C~)]2[(P~Cz)) - ~,~C~)]/[~P~(~)] 2 

M~Cz) = {,~,ACz)[p~,B(~)_ ~ ( z ) ] -  .~'~(z)[P~'A(~)- ~'~(~)l}/~P~(~) 

CPA being a single site approximation has its own limitations, h has been pointed out time 
and again that it cannot take into account effects involving more than one site like the effect 
of clustering in split band alloys at low concentration limi~, the problem of lattice relaxation 
leading to angular distortion of hopping integrals, the problem of alloys with short range order 
arising out of correlation between neighbouring sites. Futhermore the self-consistency involved 
in the solution of CPA equation is not trivial and one has to invoke subtle mathematical 
procedures to ensure proper convergence. 

Off-diagonal Disorder  Wi th in  The  C P A  

An approximate scheme of treating off-diagonal disorder within the single site approximation 
is given by Blackman,  Esterling and Berk (1971) (BEB). While in the standard CPA the 
hopping integral is taken to be nonrandom, in the scheme of BEB the hopping integral depends 
upon the occupancy of the sites between which hopping will take place. As a consequence 
, while the self-energy corrections in standard CPA method are independent of the atomic 
species , reflecting the fact that both A and B atom see the same effective environment , the 
BEB scheme distinguishes the manner in which the electron diffuses away ( and hence also the 
renormalisation effects ) from atomic species. 

The methodology developed in locator formalism ( starting with atomistically localized 
electronic states and then introducing the overlap term ) involves introduction of matrix locators 
g~, Green function G.Gij~and transfer integrals W~j given by 
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(. 
2--~A .-- 

& ,0 

( niG~jnj niGijmj ~ G AA G~.S~ 

W ~ = (  a~ ~J~ 

where site diagonal energies e~ take on the values eA or es and the transfer integral Wij 
describing the electron hopping between sites i and j can assume values W~ A = c~q , W~ s - 
W~ A = (ij or W BB =/~ij ni ( rnl - 1 -  nl ) is the projection operator equals unity (zero) 
when the site i is occupied by an A(B) atom. 

The equation of motion satisfied by Green function matrix is then 

k 

By formally" treating the second term on the right hand side as perturbation one finds the 
expression 

where ~ denotes the fully renormalized interactor. 

Within the spirit of single site CPA, replacing bare locator ~ by effective medium locator 
and introducing renormalized interactor ~ in terms of g one has 

= g A)-lg 

and the CPA seN-consistency condition 

<C_.)~176 = 

(...), denotes the average over the occupation of a single site. This self-consistency equation 
for matrix Green function in turn leads to the determination of three independent elements of 
self-energy. Recently this formalism within TB-LMTO framework has been employed by Sluiter 
and Singh (1994). This takes into account the effect of off-diagonal disorder as registered by 
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a single impurity atom and provides an approximate technique for dealing with off-diagonal 
disorder. 

A u g m e n t e d  Space Formal ism.  

The augmented space formalism was introduced by Mookerjee in 1973 as an alternative exact 
averaging scheme. In  this formalism, instead of looking at the system as electrons moving in a 
random array of disordered potentials, one considers electrons moving in periodic potentials in 
the presence of a field which describes the disorder. Effectively one extends the Hilbert space 
~/on which the random Hamiltonian is described by augmenting with it a configuartion space 
describing different configurations of the disordered system. 

The approximate methods based on this disorder field formalism have a different underlying 
philosophy. In the effective medium mean field theories the approximation precedes configura- 
tion averaging. The approximations made prior to configuration averaging may not preserve 
the analyticity of Green function after the averaging in all cases. On the other hand in the dis- 
order field picture, the Hamiltonian constructed in the full augmented space, already contains 
the information of all possible configurations and introduction of approximations are expected 
to preserve the analytic properties of Green function. Further advantage of such a averaging 
scheme is that the formulation is an extremely general one , applicable to functions of any 
random variables obeying certain conditions. This allows one to apply this formalism not only 
for Green function but also for more complicated functions of 'the Hamiltonians. 

The starting point is a set of random variables {hi} which we call a configuration. A certain 
probability density P({n~}) is associated with various values of the configuration. Assuming 
that different ni are statistically independent, one have 

P({n,}) = 1-I pi(n,) 

where Pl (ni) is the probability density of the individual variables. This assumption ig- 
nores short-range order due to chemAcal clustering effect which invariably leads to statistical 
correlation between the {ni}'s. 

It should be noted that probability density pl (ni) satisfies the properties 

p (ni) > 0 

f ~  pi(nl)dnl = 1 
O0 

These properties are specific to the imaginary part of the resolvent of a self-adjoint operator 
in a certain Hilbert space. The formalism now introduces a Hilbert space r and a orthonormal 
basis set { If~} } such that p~ (n~) corresponds to the imaginary part of the resolvent of a suitably 
chosen operator M~ in r  If If~/is a specially chosen member of the orthonormal basis {If~/} 
in r then 
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P, Cn,) = -l /~'Z~(.t 'glC,~,r- MO-11.f~) (3.7) 

A prescription for construction of a suitable Mi for a given Pi (nl) is as follows: 

For a given pi(nl) if one could find a convergent continued fraction of the kind, 

1 
p,(nO = - i / , , I m  ,.2 

v I 

n ~ "  - -  C~ 1 - -  

n~ + - a 2 -  b--22 
g o .  

where n + = ni + i0 + 

then a representation of the operator Mi is the tridiagonal matrix with al , a2 , . . .  etc 
along the diagonal and b, , b2 ,  . . .  etc along the off-diagonal positions in some basis {[f~,)} 

Of course one  has to restrict to probability distributions all of whose moments are finite, 
otherwise a convergent continued fraction expansion is not possibh. Most of the physically 
valid probability distributions are of this kind, the only exception being the Lorentzian. A 
critical look at the construction procedure reveals that it is actually the inverse of the recursion 
method. For a random binary A~BI_~ alloy one has a bimodal probability distribution given 
by 

p, Cn,) = zs (n , -  1) + (1 - ~)a(~,) 

where 
n l  - -  

1 for i  = A 
0 for i = B 

For pi(nl) as defined M~ is a tridiagonal matrix in the space ~i of rank 2 with a representation 

Mi-  ~/x(i" x) (1- x) ] 

in the basis If~) and If~) 

We now revert to the problem of configuration averaging. To start with let us consider an 
average of the form 

(F) 

_ [ . O F ( n , ) { _ l / r  
.7 0 0  
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= -ll~rlm ~ fo~ dn,F(n,)<folm)<ml(n,I - M~)-tln)<nlfg) 

- -  /f - 

= 

= ~(glm)F(m)(mlg) 
,m, 

= (f ol?(Mdlfo) (3.8) 

The first step makes use of equation (3.7) , the second step is obtained by introducing 
complete set of eigenvectors of operator M~ and the third step follows from the orthogonality 
of eigenvectors. 

~,~ Im)F(m)(ml = F(M~) is the same operator ,function of Mi as F was of nl .  

The generalization to a function of several variables {ni} is a straightforward one. To each 
variable nl one has associated a Hilbert space r , a basis set {If~)} and a representation of 
a self-adjoint operator Mi in this basis related to the probability density of the variable ni. 
r with its basis and operator M~ contains all possible information about the configurations 
of the variable nl. The product space ~ = rI~ r can now be constructed which contains all 
possible states of the set {n,} L e. all configurations of the disordered system. It is called the 
configuration space or disorder space. The basis in the product space is defined as 

'[If)} = {If ~)} ~ {If ~)} ~ . . .  

while the operator iVI(0 in the product space is given by 

~(0 = I | 1 7 4 1 7 4  

Once {If)} and 1VI(0 is defined one can define the operator functional F( 1VI (1) , 2 (2) , . . .  , 
1VI(0, ... ) in r and the configuration averaging of the function F which is a function of multiple 
random variables {nl} is given by augmented space theorem 

(F) = (folF(~/O), 217/(~), ... ,'2~/(')',...)l/o) 

where 

I/0> = | |  

is the representative state againest which configuration fluctuations are described. 

The calculation of (F) thus reduces to obtaining a particular matrix element in augmented 
space. For electronic structure calculation in a disordered system F is chosen to be the matrix 
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element of the Green function ( zI - H) -1 , where H describes the random Hamiltonian of the 
system and random variables in this case {nl} are the site occupation variables. 

Cluster  Coherent  Potential  Approximation 

Among the various attempts for cluster generalization of CPA, the method based on aug- 
mented space formalism (Mookerjee,1987) has been found to retain the correct analytic form 
of Green function. As discussed, in augmented space formalism the configuartion avergaing is 
achieved by expanding the usual Hilbert space ~/ to  include the disorder space r in which the 
configuration fluctuations are described and then obtaining the ground state matrix element of 
operator functional of the random function in the enlarged augmented space. 

The principal steps of cluster coherent potential approximation based on augmented space 
formalism goes on as follows: 

(i) The full augmented space ~ = 7"/| ~I, is partitioned into a subspace 91 spanned by the 
cluster C and its configurations and the rest. If the cluster C is of size N then the rank 
of the subspace 91 is N | 2 N . The Hamiltonian in the rest of the augmented space is 
replaced by an effective, non-random, translationally symmetric Hamiltonian He//. 

(ii) The Green function in the subspace 91 is obtained by the partition theorem into this 
subspace. The partition theorem tells that 

G O = (zI1- H1-  HnG2Ht2) -P1 

(iil) 

Civ) 

with G2 = ( z I2 - H,/! )-t'2 

where X-P~ is the inverse of the  operator X in the subspace labelled by j alone , H1 
denotes the Hamiltonian in the subspace 91 , H2 is the Hamiltonian in ~/~1 and Hn is 
the off-diagonal term between 91 and ~/~1. 

The subspace 91 is again partitioned into a subspace spanned by the vectors IR, f0/where 
1% 6 C and the rest.The Green function in this subspace is obtained again by applying 
partition theorem. 

The augmented space theorem then tells that the configuration averaged Green function 
(Gas,) is given by 

IRfol(EI- /t)-l[R' fo) 

where gI is the operator functional in the extended augmented space. 

(v) The effective Hamiltonian He// is chosen such that the Green function for the effective 
medium, ~e// "~L~' - (GRR') , giving the self-consistency conditions for the CCPA. 
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Though the cluster coherent potential approximation, based on the augmented space for- 
realism has been implemented within the framework of KKR and LMTO ( Razee et. al. , 1990 
; Datta et. al. , 1993), to date its application has been limited to model systems like one with a 
vband alone and extensions to realistic, alloy systems with simultaneous solution of more than 
one self-consitency condition poses a difficult numerical problem, particularly if the size of the 
cluster is large. 

Augmented  Space Recursion Within  The Framework Of T B - L M T O  (TB-LMTO- 
ASR) 

The rectrrsion method (Haydock et. al. , 1972) provides a general numerical technique for 
calculating projected densities of states of one electron Hamiltonians expressed in a local orbital 
basis set. Because it is based on real space operations it has wide applicability in disordered 
materials, defect structures and surfaces. It can also be used to describe translationally invariant 
systems. For complex materials with large number of local orbitals in the basis set of each 
unit cell, recursion method may be proved to be more advantageous than the Brillouin-zone 
integration technique. 

In recursion method, one exploits the sparseness of the local orbital representation of Hamil- 
tonian H and performs a unitary transformation on the local orbital basis to produce a tri- 
diagonal representation of the Hamiltonian. New basis functions are defined iteratively so as 
to guarantee that each new member interacts only with its preceding and following member. 
Let us denote the starting state of the recursion method by lu0). The vector H lu0) is an 
unrenormalized, combination of the orbitals with which ]%) interacts and the relative contri- 
butions of the orbitals are proportional to the strength of interactions. This combination is 
made orthogonal to lu0) by removing the contribution (uolHluo) lu0) = a01u0) from H [u0). ao 
defines the self-energy of ]uo) �9 This vector is then normalized to give an orbital ]ul) with the 
normalization constant bl defining a measure of the strength of the interaction between lu0) 
and lul) . The vector lut) contains the first neighbour environment of lu0). 

In general the recursion procedure defines the new set of orthonormalized orbitals and the 
representation of the Hamiltonian in the new basis ( the an and b~ ) by the three term recurrence 
relation 

The representation of H in the new basis is tridiagonal and is given by Hn,, = a~, H~,n+l - 
H*+I,~ = b, , ,  H,~,, = 0 for I m -  n] > 1 . The states lug) are localized on shell of orbitals, n 
hops away from the orbitals of the starting state [uo/ . The parameters a,~ and b,~ describe the 
coupling of each environment to itself and its neighbours. This leads to a continued fraction 
representation for the Green function matrix element, (uolGluo) related to the projected density 
of states on [uo) as 

= - 1 / lal ,o) 



Augmented Space Recursive Approach... 58 

with the continued fraction expansion given by 

( olaluo) = 

Z -- al - -  bl 
Z - -  a 2  - -  - -  

The recursion method is a moment preserving transformation: the weighted sum of closed 
paths on the original lattice and the effective chain are the same. {a., b.} contain information 
about the irreducible paths of lengths (2n +1 ) and 2n respectively i. e. those closed paths that 
donot return to the intial orbital at any stage. If the recursion algorithm is stoped after n steps, 
n exact levels of the continued fraction are obtained. The matrix element after n levels contains 
the exact contributions from all closed paths of n steps starting and ending at the central orbital. 
Thus if one tries to model an infinitely extended system, the recursion algorithm after n steps 
contains contributions only from a central cluster of O(n s) atoms. For numerical purposes this 
limits the number of atoms that can be modelled and also implies that one is always studyng 
a finite system. In order to reduce the necessary amount of computer storage it is possible to 
make use of symmetry of lattice and orbitals, a Point that will be pursued in following section. 
For finite cluster one obtains a terminating continued fraction yielding a number of isolated 
bound states. For most purposes this is an unphysical approximation and finite size effects are 
eliminated by embedding the cluster in an infinite medium. Mathematically this means that 
a terminator must be appended to the continued fraction expansion so as to obtain a Green 
function with g branch cut rather than a set of poles. The problem of finding a terminator 
r(E) that gives an optimal surrounding medium has been studied in literature (Haydock and 
Nex, 1984 ; Lucini and Nex , I987). In all terminating schemes one substitutes for r(E) an 
Herglotz function so that the approximate Green function has the same singularities as that 
of the Green function of the system. The computation scheme is closely related to the theory 
of orthogonal polynomials , a fact that is exploited in the development of stable and efficient 
computer codes. 

For a system described by a disordered Hamiltonian, the recursion method defined on the 
augmented space enables one to calculate the configuration averaged Green function directly. 
The advantageof the method is that it does not involve single site approximations and solutions 
of self-consistent equations as required in the CPA or its generalizations . Further, one can 
treat both diagonal and off-diagonal disorder on equal footing. 

The starting point for the TB-LMTO augmented space recursion , is the most localized 
sparse tight-binding Hamiltonian derived systematically from the LMTO-ASA theory and gen- 
eralized to substitutionally disordered random binary alIoys: 

g~ ^ 
R L , R ' L '  ~ R L ~ R R , ~ L L  ' . ~  s 2%112 

RL ~ RL,R'L ' R'L' 

cg (1 - = CR nn + nR) 
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{AI/2~e (1  - nn) 

Here R denotes the lattice sites and L=(~ m) are the orbital indices (for transition metal 
l <2) C~L , C ~  and A~r. ,ASL are the potential parameters of the constituents A and B of 
the alloy in the most tight-binding representation/3, nn are the local site occupation variables 
which randomly take values 1 and 0 according to whether the site is occupied b y  an A atom 
or not. The representation of the Hamiltonian in the augmented space I:I consists of replacing 
the local site occupation variables {nn } by (l(r and is given by: 

Jq 

where, 

E + | o' o. + . . .  
P~ 

"t" E E k RL "t" ~'~P,Z, 'v" ) RL,R'L' k~'aR'L'a "~ v ' - ' n ' L " "  ) | 
RL neLI 

6A~ tAl/2a _ Î/~B~ -- ki"~nL "-~RL I 

is the identity operator defined in the augmented space while other parameters have their 
usual meaning. The operator 1~I n for binary probability distribution in the second quantized 
notation is given by: 

(b~o,bn0) and (b~l,bm) are the creation and annihilation operators in the augmented space 
, where each site is characterized by two states ( 0,1 ) . 

The Hamiltonian is now an operator in a much enlarged space r = 7"/| I'I Cn (the aug- 
mented space), where 7/ is  the Hilbert space spanned by the countable basis set {JR)}. The 
enlarged Hamiltonian does not involve any random variables but incorporates within itself the 
full information about the random occupation variables . If we substitute eq (3.9) for 1VI n , 
then with the aid of little algebra we can show that the augmented space Hamiltonian contains 
operators of the following types as discussed in ( Datta and Mookerjee, 1992). 

(a) a~ an, with I~=R t and R#  R ~ terms. The operators acting on a vector in the augmented 
space changes only the real space label, but keeps the configuration part unchanged. 

(b) a~ an, b ~  bk, with R = Pd and R # R' terms, k is R or R' ,while, ~ and/~ may take 
value 0 and 1 . These operators acting on an augmented space vector may change the real 
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space label ( if R # R' ) . In addition, they may also change the configuration at the site R or 

(c) a~ a,,, b~, b,,, b~,., b,,,~ with ~, # ,,, ,~ ta~ng values 0 and i. The operator, may 
change the real space label ( if P~ # 1%' ) , as well as the configuration either at R or K' or both. 

Once we have identified the operators in the augmented space, it is worth mentioning how 
we represent the basis in the real space and in the configuration space. A basis I m) in the 
Hilbert space ~ is represented by a column vector K,~ with zeros everywhere except at the 
m-th position. The inner products are defined as 

(ml e In) = K~K. 
a t a . K p  = 6. .K, .  

A member of the basis in II e 4a has the form 

]f~, ~ f~, @ ...) 

where each At may be either 0 or 1 . 

In the usual terminology of ASF the number of 1% define the  cardinality C of the basis and 
the sequence of positions where one has l 's is called the cardinality sequence { Sc } and that 
labels the basis. Thus a binary sequence B [ C ,  { Sc } ] is a representation of the member of 
the basis in the configuration space. The dot product between the basis members is then 

B[C, {So}] e B[C', {So,}] = ,~cc,,%s~s~,~ 

Having defined the Harniltonian and its operation in augmented space, the recursion method 
defined on the augmented space, gives the configuration avegared Green function directly. For 
determination of configuration avergared Green function < GaL,RL (Z) > in augmented space 
recurslve method one choses as starting state of recursion 

I,~,) = la, L) | IIo) 

The suc~sive states l&) and r~cursion co-eScients ,~?~ a~d ~C~) are generated recursively 
from 

~.t§247 = ~ l & / -  ~.~l&/- ~.~l&-,I 

where 

L (&lePl&) (~., = 
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and 

Haydock (1972) has mapped the contribution to the continued fraction coefficients to self- 
avoiding walks on the underlying space. He has shown that the dominant contribution comes 
from walks that wind round the initial starting state.  This allows one to work only on a finite 
part of the augmented space. Depending upon the accuracy required and computational power 
, one generate upto nl = N - 1 recursion coefficients. 

The method of processing the Green function from the finite number of generated coefficients 
is achieved by appending a suitable terminator, as discussed earlier. The procedure, briefly, 
is as follows. 

We generate orthogonal ploynomials of the first and second kinds P ,  (z) and Q, (z) which 
are solutions of : 

= - - 

with P-1 = 0 = Q-1 ,  P0 = 1 = Q0. 

The next step is to locate, from the generated continued fraction coefficients n < nl , the 
lower band edge a ,  the band width r and the band weight w.  From this we constract a model 
Herglotz function : 

FCz) = 8w[z - (a + r / 2 )  - ~/(z - a)Cz - a - r ) l l r  2 

The T e r m i n a t i o n  C o e f f i d e n t s ,  which are the coefficients of the continued fraction expansion 
of F(z), are at = a 4-  r/2 and fit = r /4 .  According to the scheme of Lucini and Nex (1987), 
one now interpolate between the computed coefficients and those of the analytic terminator : 

5~n = 

Otn 

1/2({1 - sin{6(n + ~b)}}o6~ + {1 + sin{6(n + ~b)}}o~ t} 
n < n l  

na < n < n~ 
n 2 < n  

The method is analogous to splicing as opposed to butt-joining pieces of wood. The result 
of this procedure is that the terminator is appended in a fairly smooth way , avoiding the 
formation of semi-localized states at the interface. The reflection from the potential barrier 
represented by the terminator interfere destructively decreasing the oscillations in the local 
density of states. 



Augmented Space Recursive Approach... 62 

We now run the recursion again with I~I replaced by z , the state vectors by polynomials 
and the inner product by a union of Gauss-Chebyshev quadrature : 

b 

(f(z) | g(z)) -" ~ w,f(oL~)g(c~[) 

where, 

Irto 
w~ = - -  sin 2 0; 

n + l  

! 
cq = at % (1 - cos 0~)r/2 

0~ =~" 
n §  

This will generate a set of recursion coefficients { V~ , 6,~ } and a set of mutually orthogonal 
polynomials { R,~ (z) } and { S,~ (z) } .  

The terminator is given by ,  

S~,_2(z)- F(x)R,,_a(z) 
6~,_~[S,,,_s(z)- F(z.)P~,_2(z)] 

From the fact that  Rn and S,~ are ploynomials of order n and F(z) is a Herglotz function, 
it follows immediately that the terminator is itself Herglotz. 

The Green function is given by ,  

= 
- 

The advantage of such a termination procedure is that the approximate resolvent retains 
the Herglotz properties. It is interestting to compare this with the fact that in the cluster 
generalizations of CPA one goes to great length to ensure Herglotz properties of the Green 
function and these approximations cannot maintain the accuracy in the band widths. The 
termination approximation preserves the first 2(N-l) moments of density of states exactly . 
This represents the effect of a cluster at a distance (N-l) from the starting state . It also 
maintains the correct band-widths , band-weights and the correct singularities and estimates 
the higher moments with controlled accuracy. 

The configuration averaged density of states is given by 

n ( s )  = - L i r a  + io)) 
~r L 
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3.3 S Y M M E T R Y  R E D U C T I O N  OF A U G M E N T E D  
S P A C E  R E C U R S I O N  

Discussion of the previous sections reveal that the most versatile and general way for handling 
the problem of disordered alloys would be to consider the augmented space formalism. Since 
the augmented space involves N x 2 N basis functions, the standard method for implementing 
this on a computer would require handling an impossibly large ( N x 2 N ) x ( N x 2 N ) matrix 
Hamiltonian . Even for a fcc cluster with first nearest neighbour shell ~ the simplest one can 
imagine ~ this would require 13 x 2 is basis functions. Because of this huge number of degrees 
of freedom of the full augmented space ~ in spite of its immense potential , the method could 
not be used successfully . 

A number of attempts have been made for practical implementation of this formalism. One 
of the developments among these ~ is the travelling cluster approximation ( Gray and Kaplan,  
1976 ; 1977) , where a small number of classes of selected excitations in augmented space are 
preserved. In spite of the drastic simplification so introduced ~ the resulting equations are still 
so formidable to discourage further investigations after early attempts . In the cluster CPA 
(Mookerjee,1987) (in which one retains the disorder fluctuations only from a chosen cluster 
and replaces the rest of the system by an effective medium ) as already discussed and pointed 
out, one is restricted by the limitation of solving number of self-consistent equations, numbers 
increasing with the size of chosen cluster. 

In the present approach ~ on the other hand ~ one treats the full large augmented space 
Hamiltonian matrix with recursion method . The conceptual advantages in augmented space 
formalism include apart from analyticity ~ translational and rotational invariance automatically 
built-in in the augmented space Hamiltonian . This allows one to invoke the idea of utilising 
symmetry operations present in confuguration space in addition to usual Hilbert space, in the 
context of recursion method ~ reducing the rank of the Hamiltonian drastically and making 
the implementation of augmented space formalism feasible . In the present section we devote 
ourself to symmetry consideration of recursion method in augmented space as well as in real 
space. Since the augmented space recursion essentially retains all the properties of real space 
recursion but described in an much enlarged space ~ it will be useful to consider symmetry 
operations in real space recurslon first and then to consider that in augmented space recursion. 

3.3.1 Real Space Recursion Invoking Symmetry 

Recursion method discussed in great detail previously provides an algorithm for determining the 
resolvent of Hamiltonian as continued fraction expansion. The number of continued fraction to 
be calculated is limited by the size of the cluster of atoms and for a large number of recursion 
level on a small cluster,  the higher order continued fraction co-efficients reflect the boundary 
effect , which manifests itself as the splitting of the degenerate t~  and eg orbitals . However 

the choice of size of cluster is restricted by computer storage and time . Use of symmetry 
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operations in recursion method may prove to be an amicable solution of this , where one can 
obtain same resolution and accuracy but with much less computer storage and time. 

It has been shown by Gallagher (1978) that if the starting state of the recursion belongs 
to an irreducible representation of the Hamiltonian , then the states belonging to different 
irreducible representation or different rows of the same irreducible representation donot mix in 
the process of recursion. So that one can restrict oneself to irreducible portion of the lattice. 

The philisophy of utilising symmetry in recursion method , operationally, is as follows : 

Basis vectors , defined iteratively in recursion procedure , carry information of more and 
more distant environment of the starting state [u0) �9 The vector H ]u0) is combination of states 
with which ]uo) interact and the relative contribution of a state ]u.) in H luo) is proportional 
tothe strength of interaction between ]u.) and lu0). The orbitals sitting at lattice sites which 
are connected by point group symmetry operations to each other have identical coupling to 
u0. If T is an unitary representation of a symmetry operation , then the states generated by 
unitary transformations, Tlu,~)'s carry the same information as that of [u,~) . Hence it is useful 
to consider among the states coupled to lu0) , only those belonging to the irreducible of the 
Hamiltonian and redefine the Harniltonian operation so as to reduce the computer storage and 
time. 

Let II) be an orbital on lattice site coupled to !J) , both belonging to irreducible repre- 
sentation of the Hamiltonian and let II1) .... IIN1) be the distinct orbitals on sites obtained 
by operating ]I) by symmetry operations T ' s .  They are called the orbitals equivalent to ]I) 
]J1)... ]JN2) b6 the corresponding equivalent orbitals for ]J) .  Then the redefined Hamiltonian 
operation for recursion procedure confined to irreducible portion of the lattice will be given by 

<ZlHIJ). od-  (ZlHIJ) 
where Wa is the number of distinct orbitals equivalent to [a) ( e.g. Wt = N1 and Wj = N2). 

Having redefined the Hamiltonian operation, the recursion method is given by the usual 
three term recurrence relations as 

with 

b,~+lln + 1) - H[n) - anln') - b,~{n - 1) 

and 

= (n[Hi > 

b~ = (n- llHln > 
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LAT- Nob 
TICE 

SQUARE 

FCC 

SC 

5 
10 
15 
20 

5 
10 
11 

5 
10 
11 

N! N~ M rl r, 

25 
145 
365 
685 
147 

2057 
2869 

63 
833 
1159 

6 5 1.291 .558 
25 10 1.504 .742 
56 15 1.748 .930 
100 20 2.041 1.070 

9 5 19.850 .468 
71 10 22.910 .539 
93 11 24.000 .570 

7 5 2 .414 .410 
41 10 2.760 .600 
53 11 2.850 .625 

Table 3.1: Comparison in system size and time taken in recursion for square, face centered 
cubic and simple cubic lattices decribed by model tight-binding Hamiltonian with only s-orbital 
invoking and not invoking symmetry for fixed number of shells (Nsh) and fixed number of 
recursion steps (M). N! and Nr are the number of sites in the full and symmetry reduced maps. 
r! and rr are the corresponsing CPU times in seconds on a HP 9000/300 machine. 

Nob N! N, M r! r, 

Table 3.2: Comparison in system size and time taken in recursion for face centerd cubic lattices 
decribed by LMTO Hamiltonian with s-p-d orbital invoking and not invoking symmetry for 
fixed number of shell and fixed recursion step. Time quoted are CPU time in minutes in a HP 
9000/300 machine. All table headings have the same meaning as in Table 3.1 
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Figure 3.1" (a)-(c) Density of states for square ,simple cubic and fcc lattice described by tight 
binding Hamiltonian ( on-site term ~ = 0. and transfer term V = -1.0 ) obtained by recursion 
on symmetry reduced maps (d) density of states for fcc based Ag metal described by LMTO 
Hamiltonian on symmetry reduced map 
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where the orbitals { In) } are orbitals restricted to irreducible portion of the lattice and 

HIn) =  <nlHIm> ,oalm> 
fl,$ 

the summation running over the states coupled to [n) belonging to irreducible zone. 

The above prescription reflects the symmetry of the underlying lattice only and holds good 
for recurslon with s-like orbltals, having the fun spherical symmetry. Inclusion of the p-orbitals 
introduces preferred x ,  y or z direction and breaks the symmetry between x , y and z axis , 
thus the point group symmetry operations which interchange between x ,  y and z co-ordinates 
are prohibited. Futhermore the effective irreducible basis, which is linear combination of the 
old basis sets ~ reflects the symmetry of the orbital itself and it is the symmetry of the orbltals 
which prohibits the overlap at a particular site position. We call these positions, symmetry 
positions with respect to overlaping orbitals. 

Within the above frame-work of redefining Hamiltonian operation, the modified Hamilto- 
nian operation , in presence of hybridization between orbitals not having spherical symmetry 
may be defined as 

WJ # f 

(I, LIHIJ, L'),,,od= I['7~-, (I,L[H[J,L )~j(L,L ) 
V VVZ 

The additional factor fla(L, L') ( 0 or 1) determines whether the position occupied by the 
site J is a symmtry position with respect to the orbitals L and L' or not .  

In Table 3.1 - 3.2 we compare the number of sites and the CPU time needed for recursion 
, making use of symmetry and those obtained without invoking symmetry for square, simple 
cubic and fcc lattice. Figure. 3.1 shows density of states obtained by recursion on symmetry 
reduced maps. 
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3.3.2 Augmented Space Recursion Invoking Symmetry 

The elegance of the augmented space formalism lies in its built-in translational and rotational 
invariance. The nonrandom augmented space Hamiltonian, containing the full information 
about the distribution of random variable bear the translational and rotational symmetry ana- 
logus to a nonrandom Hilbert space Hamiltonian. It is the homogeneity of disorder that gives 
rise to symmetry in configuration space. Considering the case of random binary alloys AxBI-= 
, for a site occupied by A atom, all the Z configurations with its (Z- l )  neighbours occupied 
by A and one by B atom are equivalent . The augmented space is essentially an extended 
space, made out of direct product of two disjoint subspaces, the usual Hilbert space and the 
configuration space, giving information about the real space sites where there is deviation from 
uniform background of pure element. This allows one to extend all the symmetry consideration 
of real space recursion to augmented space recursion, carried out in an enlarged space. 

A general basis in augmented space is the direct product of the Hilbert space basis and the 
configuration space basis 

I~) = Ii) | B[7, S{7}] 

B[%S{~}] = If~,,~ . . . . .  ~,) 

as discussed earlier , are uniquely specified by the set of points { a } at which there are 
excitations. 

The augmented space Hamiltonian commutes with all the symmetry operations of the 
Hilbert space. The transformation of basis orbitals under point group symmetry operation is 
given by 

T([i) @ If.~,.2 ..... ..,)} = T[i) | ]fT~,~,T.2 ..... T..,) = ii') | [L') 

Thus the equivalent states corresponding to i~) is obtained by applying symmetry operations 
independently to Hilbert space part and configuration part and picking up the distinct ones 

The operation of the augmented space Hamiltonlan redefined for confinement of recursion 
procedure to irreducible portion of Hamiltonian, for orbitals with spherical symmetry ,is given 
by 

{~',i~i~'Jl~od = ~{~,i ~ ~i,'~l~w~ J 
I 

where Wj and Wz denote the number of equivalent states corresponding to ~j and ~z. 
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'No~ N N, M r r, 

Table 3.3: Comparison in system size and time taken in augmented space recursion for a 
model 50-50 alloy system described by tight-binding s-orbital Hamiltonian ( on-site term for 
components A and B , eA - 2.0 , es - -2.0 and non-random off-diagonal term V - -1.0. ) 
in a square lattice, invoking and not invoking symmetry for fixed number of shell and fixed 
recursion step. Time quoted are CPU time in seconds on a HP 9000/300 machine. All table 
headings have the same meaning as in Tables 3.1 and 3.2. 

Neh Nt'  N~ M r! r ,  

Table 3.4: Comparison in system size and time taken in augmented space recursion for the 
fcc based AgPd alloy system at 50-50 concentration described by TB-LMTO Hamiltonian , 
invoking and not invoking symmetry for fixed number of shell and fixed recursion step. Time 
quoted are CPU time in minutes in a HP 9000/300 machine. All table headings have the same 
meaning as in Tables 3.1-3.3. 
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Figure 3.2: (a) Density of states for a model 50-50 alloy based on square lattice described by 
tight binding Har~ltonian ( on-slte terms ea = 2.0 , ~B= -2.0 and transfer term V - -1.0 ) 
obtained by recurslon on symmetry reduced map . (b) density of  states for fcc based 50-50 
AgPd alloy described by LMTO Hamiltonian obtained by recursion on symmetry reduced map 
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Introduction of orditals without spherical symmetry, introduces another factor of ~t(L,  L') 
determining whether the state ~I is a symmetric state with respect to orbitals L and L' , so 
that the redefined Hamiltonian operation becomes 

I~xlHl~JI,nod = ~1~tl | HI~JI ~r 
I 

A given site in augmented space is symmetric site with respect to orbitals L and L ' ,  if the 
real space site i and the sites { a } at which there are excitations satisfy the condition of being 
symmetric site with respect to orbitals L and L' , in the sense defined in the context of real 
space recursion 

In Table 3.3 - 3.4 we compare the number of sites and the CPU time needed for augmented 
space recursion, making use of symmetry and those obtained without invoking symmetry for 
square and fcc lattice. Figure. 3.2 shows corresponding density of states obtained. 

3.4 C O M P U T A T I O N A L  D E T A I L S .  

We now mention some details concerning the numerical part of the problem. Total energy 
density functional calculations were performed for the elememts. The Kohn-Sham equations 
were solved in the local density approximation (LDA). The LDA was treated within the context 
of the method of linear muffin tin orbitals in the atomic sphere approximation. The computation 
were performed semi relativistically and the exchange correlation potential of von Barth and 
Hedin (1972) was used. The basis set composed of l = 0,1,2 orbitals so that the occuring 
matrices are of order 9. The elemental potential parameters appropriate to the alloy radius 
was used to parametrize the alloy Hamiltonian. This essentially takes into account charge self 
consistency , as explained latter , in an approximate yet accurate way. For the purpose of 
augmented space recursion, a four shell augmented space map was generated from a cluster of 
400 sites , with interaction upto first nearest neighbour for the most dosed packed fcc based 
structures. For the pure metallic cases we have gone upto fifteen levels in the continued fraction 
to reproduce the sharp structure. For the alloys we have gone upto seven recursion levels. This 
is sufficient, since disorder smears out the fine structures in the density of states. 

3.4.1 Charge Self Consistency 

We describe here a way to account for charge self-consistency proposed by Kudrnovsk~ and 
Drchal (1990) . Their idea was an extension to disordered alloys of the method described by 
Andersen et. al. (1987) for ordered intermetallics. 

The flexibility in the choice of the atomic sphere radii allows one to include the effects of 
charge self consistency approximately yet accurately without the need for full self consistency. 
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For this one needs the information of potential parameters and their volume derivatives of 
elements. The essential idea is the charge neutrality of the component spheres. LMTO-ASA 
offers the option to choose different radii for the host and the impurity atom and one can vary 
them with the restriction that overlap between spheres mearsured by 

s a + s R' - IR - R'I 
8 R 

do not exceed 30% of s R ( s R being the radius of the sphere at site 1% ). Thus one can vary 
the sphere radii about the pure component values to obtain charge neutral spheres. For binary 
A, BI_, alloys with volume V ~zz~ per atom, the atomic volumes of the constituents, V Q , ( Q 
= A,B) should satisfy the volume constraint 

xV a + (i - x)V ~ = V ~"~ (3.10) 

The assumption of a linear pressure volume relation yields 

( v  A -  Y 2 )  . ( Y  ~ - v 2 )  ~ A (3.11) 
vo A . Vo A = Bo : Bo 

where V~ ( Q = A,B) are the atomic volumes of the components at normal pressure and 
B~ ( Q = A,B) are the corresponding bulk moduli. 

T h e  solutions to equations (3.10) and ( 3 . 1 1 )  are 

y A _ 

y B = 

B alloy B A B Bo v + (1 - zly~ (Bo - Bo )Y~" 

A =lloy A B A B ~ , , ~  + ~_v~B~ : B :  ) v. ~ 
z V ~ B ]  + (1 - z lV2Br  o 

For alloys obeying Vegard's law where the volume per atom in the alloy is simply the 
concentration weighted average of the normal pressure atomic volumes of the constituents i. e. 

v ~''~ = z v 2  + (1 - z ) v 2  

the solution is trivial, V Q = Vo Q ( Q = A,B) , that is , atomic volumes of the elements 
should be taken at normal pressure. The potential parameters in the alloy for the component 
Q(Q-A,B) should be calculated at new radius s Q = ( 3V Q ] 4 ~r ) l /s .  For large differences 
between s Q and s~ [= (3V~/4~r) 1/3] it is important not to interpolate linearly in s Q. The 
suggestion is to use logarithmic interpolation given by 
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Q dC . Q 
= ci + ) dlnsQ 

0 
dTf, in(sO/sO~ "yf = "yi  + , . o ,  

dA? 

The potential parameters of elemental metals for normal pressure as well as their radial 
derivatives obtained via self consistent LMTO-ASA calculations are tabulated in the review 
article by Andersen st. ai.(1985) . To correct for the fact that alloy Wigner-Seitz radius w~zzo~ 
differs from the radii s • which affects only two of the parameters A and 7 ,  one has to multiply 
them by (sQ/wali~) ~t+l. This scheme of calculation provides one with the species potential of 
neutral spheres which are related to a common zero of the energy within ASA and thus rules 
out the calculation of a Madelung potential. The Madelung term due to charge transfer effect 
gives rise to a constant shift in potential parameter values. Calculation with neutral spheres 
with no Madelung term present has been shown to be accurate enough for metallic alloys , 
involving small charge transfers and consequently a small Madelung shift . 

Our work is based on this prescription of charge self consistency scheme. It is worth men- 
tioning at this point that in principle, one can also carry out the full charge self-consistency 
for the disordered alloys. Such a charge-self-consistent calculation involves self-consistency for 
the average component atom. 

From the average component atom projected density of states one can calculate the energy 
moments, hence the charge density in the average component spheres by : 

m(2) t~,2 [r~ 

where 

re(q) /_vp RL = dEnRL(E)(E -- Ev,RL) q (3.12) 

n~(E)  is the orbital projected partial density of states . err (r) and r  (r) are the 
solution of the SchrSdinger equation in a sphere. From the charge density one can calculate 
the potential by solving the Poisson equation and the exchange-correlation part by the density 
functional formalism. The Schr6dinger equation is then solved to obtain a new set of potential 
parameters for components and the calculation is repeated until theinput and output charge 
densities ( or potentials ) are identical within a preassigned error limit . However such a 
full-fledged self-consistent calculation is time-consuming and furthermore unlike the ordered 
intermetallics there is no unique prescription for calculation of the Madelung potential due to 
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charge transfer between various spheres and at this point one has to make one or the other 
approximate definition. 

This full-fledged charge self-consistency scheme has been reserved for future work beyond 
this thesis. 

3.4.2 The MultiSpin Coding Technique 

We have discussed in section 3.3, how the symmetry reduction of augmented space Hamiltonian 
can be utilised for practical implementation of the augmented space recursion. We now discuss 
of the computational scheme that has been used in conjunction with symmetry reduction for a 
fast and space- saving implementation of the augmented space recursion. 

Each basis in configuration space, carrying information about the occupation variable at 
every site , is nothing but strings of O's and l's . We may thus represent the basis vectors 
by a collection of binary words . In a M -bit machine, each M'bit word can represent upto 
(M - 1) terms as a sequence of O's and l's and for the configuration of a lattice having size N 
, N/(M - 1) words are necessary. This enables us to store configuration states efficiently and 
provides large scale saving of computer disk space. 

The O's and l 's characterizing the two states of a given site, may be identified with the up 
and down states of an Ising system and the operations of the augmented space Hamiltonian 
, which project out or change the configuration state at a given site are identical with the 
spin projection and spin flip operations of the Ising Hamiltonian. This allows us to use the 
computational techniques , used in the numerical work with the Ising model ( Chowdhury et. 
aI. , 1987), extensively. 

The operations on the configuration part of the augmented space Hamiltonian can be rep- 
resented as 

{So}] = B' [C' ,  {So,}] 

b!~ , b/~ are creation and annihilation operators of excitations caused by the disorder fluc- 
tuation at the site i .  B [ C ,  { Sv } ] represents the binary sequence representation of a 
configuration space basis member with cardinality C and cardinality sequence {Sv} and simi- 
larly B' [ C ' ,  {Sa, } ] represents that with cardinality C' and cardinality sequence {Sv, } . 

If A = / ~ ,  then we have the projection operation, so that C = C' with {Sv, } = {Sa} �9 If 
~/~ then we have the spin flip operation. There can be two possibilities, either i belongs to 

the cardinality sequence { Sa } or it does not .  If i E {Sv} , since the flip operation changes 
the variable at site i from 1 to 0 ,  we have C' = C - 1 and {Sv, } = {Sv} O i .  Alternatively 
, for i • {Sv} we have C' = C + 1 with {Sv, } = {Sa} @ i .  These can be achieved with the 
help of predeflned logical operations in any programming language ; e.g. IBITS , IBSET and 
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1BCLR in fortran77. IBITS tests the bit type ( whether it is 0 or 1 ) at a given site,  IBSET 
sets bit type at a given site to be 1 while IBCLR sets bit type at a given site to be 0 .  

Thus for the flip process, 

B'[C', {Sa,}] - (s {Sc}] + (1 - s {Sc}] 

with 

s = IBITS(i)B[C, Sc] 

Configuration corresponding to i-th site stored in m-th position of n-th word 

where 

n= ~ + I  
M-I 

m = ( i - 1 ) - ( n - 1 ) ( M - 1 )  

The binary word representation on one hand saves the computer storage enormously. On 
the other the use of logical operations with bit manipulation techniques makes the action of 
the augmented space Hamiltonian computationally very fast , avoiding the repetitive use of 
branching IF statements. 

3.5 A P P L I C A T I O N S  

3.5.1 A g P d  Al loys  : A Test Case 

The AgPd alloy series is one of the test cases among binary systems . This is in part due to 
its simple metallurgical properties , namely , that the two constituents form continuous solid 
solutions with no change in crystal structure. It has the advantage that the centres of the d 
bands of the two constituents are appreciably separated, so that the effects caused by changing 
the composition can be resolved. X-ray photoemission spectra result ( Hfinfer et. al. , 1973) 
for wide range of alloy composition is available for AgPd. XPS density of states reveals that 
the centers of the bands are almost independent of concentration for Ag as well as for Pd .  

This ,in turn , indicates that the local potentials at the sites of Ag and Pd are roughly 
independent of concentration, an assumption which underlies the CPA description of the binary 
alloy systems, as well. A comparison between XPS density of states and CPA density of states 
show that the over all prediction of the CPA is verified in AgPd system, an alloy system that 
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falls into the spilt-band regime with dominating diagonal disorder, weak off-diagonal disorder 
and small mismatch in the atomic sizes of the constituents, as they come from the same row of 
the periodic table. 

Both charge self-conslstent and charge non-self consistent calculation has been done in the 
KKR-CPA framework ( Winter and Stocks, 1983). LMTO-CPA calculations for AgPd alloys 
have been done by Kudrnovsk~" and Drchal (1990). 

While the charge non-self consistent implementation of the KKR, method suffers from the 
mismatch of the energy scales , the approximate way of performing charge self-consistency 
within LMTO-ASA frame-work provides proper positioning of constituent bands on the energy 
axis, avoiding the necessity of performing time-consuming charge self-consistent calculations. 
The emperical TB-CPA result ( Laufer and Papaconstantopoulos, 1987) for AgPd alloys with 
proper description of diagonal disorder and alignment of crystal Fermi levels to determine 
relative position of Ag and Pd bands on the energy scale also provides a reasonable electronic 
structure description of the AgPd alloy system. We have deliberately chosen AgPd as a testing 
case of theory,  since our aim is to go beyond CPA, we will have to first prove the theory to 
cases where CPA works satisfactorily. In Figure. 3.3 we present our result for Ag=Pdl_= for 
x -- 1.0 , 0.75,0.5, 0.25 and 0.0 .XPS results for AgPd alloys are shown in Figure. 3.4. Our 
result agree reasonably well with impurity peak due to Pd for the Ag rich alloys. The general 
shape of the density of states of the constituents , the position of the Fermi energy and the 
dominant peaks have been reproduced. 

It should be. mentioned that the Pd based impurity peak for Ag-rich AgPd alloys and Ag 
based impurity peak for Pd-rich AgPd alloys, obtained in KKR method are more pronounced 
and the detail shapes are in better agreement with experiment than those obtained using 
LMTO methods ( LMTO-CPA and TB-LMTO-ASR). However the agreement for the impurity 
peak positions ~0.14 Ryd measured from Fermi energy for Pd impurity peak in Ag~Pd25 alloys 
and'0.4 Ryd measured from Fermi energy for Ag impurity peak in Ag2~Pd~ alloys ) is good 
enough. The reason may probably be attributed to the use of less accurate electronic structure 
description of LMTO in LMTO-CPA and in LMTO-ASR compared to that in KKR,-CPA. 

3.5.2 CuPd Alloys 

Copper and Palladium form random alloys of fcc structure at temperatures above 600 ~ K 
throughout the concentration range. This structure persists to low temperatures except for 
palladium concentrations between about 10 % and 25 %, where transformation into the CusAu 
structure and long period ordered structure occur, and between 30 % and 50 % , where trans- 
formation into the CsC1 structure occur. 

However using rapid quenching techniques it is possible to maintain the disordered fcc phase 
at low temperature throughout the concentration range. 

In spite of the propensity of these alloys to establish some degree of short-range order, as 
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has been demonstrated by diffuse electron scattering work (Ohshima and Watanabe, 1973), it 
seems reasonable as a first step to calculate the electronic structure of CuPd alloys under the 
assumption of complete randomness. Even if the physical quantity in question depends non 
negligibly on ordering or clustering effects , the results for the random case are needed as the 
starting point for taking into account such effects. 

The trends in the electronic structure of the CuPd alloys are quite different from those of 
AgPd. In tight-binding terms we characterize CuPd as a system in which off diagonal disorder 
dominates diagonal disorder. As a result a number of novel features appear in the density of 
states. The most important effect is that there is a common d band at all concentrations and 
no palladium virtual bound state,  rendering the split band picture of the alloy theory totally 
invalid. 

Furthermore , the pure Cu and Pd d band widths are very different , being respectively 
3.3 eV and 5.5 eV . This non-isochoricity leads to effect like lattice relaxation , leading to 
perturbation in the fcc structure of the alloy, dominant in the Cu-rich regimes of the alloy . 
Treatment of such effects need extension beyond CPA and attempt to take into account such 
effects within the present frame-work has been dealt in the next section. In the present section 
we present the result for Cu~Pdl_= with x - 1.0,0.5,0.25 and 0.0 and defer the result for Cu- 
rich alloys CuvsPd2s for the next section .Since this is an alloy with predominant off -diagonal 
disorder , the inability of the emperical TB-CPA method to treat properly the off-diagonal 
disorder and to determine the relative positions of alloy constituents on the energy scale, give 
result ( Laufer and Papaconstantopoulos, 1987) that disagrees in the details of the density of 
states. Same is true for the non charge self-consistent KKR-CPA ( Rao et. al.,1984). LMTO- 
CPA calculation ( Kudrnovsk~ and Drchal, 1990) in which the disorder in the multiplicative 
factors A's of the off-diagonal element is taken into account via a mapping of the Hamiltonian 
with only diagonal disorder compares well with our result ( shown in Figure. 3.5(i) -(ii) ). 

3.6 L A T T I C E  R E L A X A T I O N  

Alloys with constituents coming from different rows of periodic table ( like CuPd, CuAu, CuBe 
, CuRb ) are characterized by large differences in pure component band-widths , reflected as 
strong off-diagonal disorder. The single-site CPA combined with simpleminded virtual band 
treatment of off-diagonal disorder by linear scaling of the valence band does not work in these 
cases and one has to use more sophisticated theories of CPA, like KKR-CPA ( Stocks et. al. , 
1977) with disorder in scattering t matrices or properly generalized off-diagonal treatments like 
BEB ( Blackman et. al. , 1971) within CPA or the approach of Kudrnovsk~ and Drchal (1990) 
of mapping the off-diagonal disorder problem onto an equivalent diagonal disorder problem. 

For alloys with components from different rows , there is also an associated size effect due 
to different atomic radii of components . In most alloy theories developed , this size effect 
is usually overlooked and atoms are placed on a regular lattice with fixed lattice constant all 



Augmented Space Recurs ive  Approach . . .  81 

over the lattice . In such a model , namely the virtual crystal structure model (Maw and 
Kudrnovsk~, 1986), the lattice cannot accommodate the differential expansion (contraction) 
around the larger (smaller) component and the lattice remains locally strained . For dilute 
alloys with low concentration of larger ( smaller ) radii components , such deviation from ideal 
lattice structure becomes appreciable and may lead to significant changes in electronic density 
of states. This lattice relaxation effect has been suggested as one of the possible candidate for 
explaining the discrepancy between the photoemission studies ( Wright et. a l ,  1987) and the 
theoretical calculations of KKR-CPA ( Winter et. al. , 1986) on Cu rich CuPd alloys. 

Such non-isochoric alloys with their associated relaxation effects are important for various 
other reasons .Various phenomenological theories of alloying , such as Hume-Rothery rules, 
state that size effects are significant with regard to phase stabil i ty.  The problem of size effect 
in the context of the Li-A1 phase diagram has been considered approximately by Sluiter et. 
al. (1990). Furthermore, lattice relaxation has been found to have significant effect on local 
magnetic moments of dilute alloys. In general, the moment decreases ( increases ) with a local 
lattice compression ( expansion ) ( Stefanou et. al. , 1987a ) .  

The TB-LMTO-ASR is capable of treating off-diagonal disorder on an equal footing to 
diagonal disorder. Since in augmented space recursion method , the form of the Hamiltonian 
is kept intact with both diagonal and off-diagonal disorder , the problem of lattice relaxation 
which brings about disorder in structure matrix describing the geometry of the lattice can be 
dealt with ease. 

3.6.1 Approaches for the study of Lattice Relaxation 

Previous approaches 

(1) The KKR-Green function method (Stefanou et. al. , 1987b ) 

KKR-Green function calculations including lattice relaxation effect has been carried out 
for a Pd impurity in Cu host. In this calculation, first the Green function of the pure Cu 
host was obtained from a self-consistent' band structure calculation. By inserting the Pd 
impurity , the Pd potential as well as the potential of the nelghbouring Cu atoms were 
allowed to be perturbed. The effect of lattice relaxation is taken into account by allowing 
the outward relaxation of the first shell of Cu atoms. The multiple scattering within this 
cluster embedded in the pure host was then calculated exactly and the potential are 
determined self-consistently by iteration. However, proper extension of a such a scheme 
to concentrated alloys requires a more sophisticated theory than the KKR-CPA. 

(ii) LMTO-CPA approach ( Kudrnovsk~ and Drchal,1989) 

The different sizes of atoms cause structural deformations in random alloys and the struc- 
ture constant arising in LMTO Hamiltonian 0 SRL,R, L, becomes dependent on the occu- 

pancy of sits R and R' by A or B type of atom . It leads to a trimodal distribution 
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of structure constant ( S aa , S as or S sa and S ss  ) assuming the perturbation due to 
structural deformation to be restricted between connecting pair of atoms . Single sited 

o CPA theory cannot account for the exact inclusion of this structural disorder in SRs~.R,z,, 
and they are accounted approximately by setting 

, o o  

Q ,  Q' can be A or B type. 

where watto~, s q and s q' denote Wigner, Seitz radius for the alloy and the pure components 
Q , Q' respectively. This is based on the scaling relation of the structure factor matrix 
given by 

where d = IR - R' I and the approximation of relaxed distance d qQ' between two sites R 
and R' occupied by atoms Q and Q~ , in terms of the distance do between the same sites 
in the unrelaxed lattice as 

do (: + 'q') do 
2Wallou Watloy 

(iii) 

Thus disorder in structure factor, essentially, modifies the multiplicative factors (A~) 1/2 

and (A~') 1/2 . Furthermore the factors introduced in A ' s  due to approximate treatment 
of chrage self-consistency ( discussed in section 3.4.1) exactly cancel out that coming from 

( b ' ~ ' ,  r., )reta=e~ and the simple prescription is to use pure component potential parameters 
foraJioy calculations . 

This simplified scheme of calculation takes into account the disorder in interatomic dis- 
tances approximately without consideration of angular distorsion of bonds arising due to 
size effect and gives us the experience of the consequence of lattice relaxation effects in 
alloys. 

Supercell Approach ( Lu et. al.,1991a;1992) 

Lu st. al. (1991a;1992) applied the special quasirandom structures construction to 
non-isochoric alloys in the context of local-density total-energy minimisation, finding a 
distribution of A-A, A-B and B-B bond lengths deviating from single, unrelaxed values. 
They applied LAPW band structure techniques to repeated superceU where they created 
a distribution of distinct environments , average corresponding to the random medium 

For concentration x = 0.25 , the special quasi-random structure was constructed by 
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AeB2 layers stacked along [ 2 0 1] direction . Their calculation of lattice expansion in 
dilute limit for CuPd alloys gave 2 % expansion around Pd atom, which agree well with 
EXAFS experimental data.  

However their calculation being based on supercell technique has its own limitation , as 
an example, being restricted to concentration x - 0.25,0.5 and 0.75. 

Present  Approach 

T B - L M T O - A S R  Wi th  Structural  Disorder 

The random Hamiltonian for binary AB alloys described under the framework of tight- 
binding LMTO basis is given by 

o = + 

(A1/2~B (i - nR)} ... E Z;{ -,, + R,,j 

(1- nR,)} k'-'R'c') nR' + k'-'R'r/) 

where the potential parameters C and A1/2 at site R in the most localized ~ representation 
can be of A type or B type depending upon whether nR is 0 or 1 i.e. , whether it is occupied 
by an A atom or a B atom. In absence of any positional disorder, the structure matrix which 
characterizes the underlying lattice structure is independent of the component atom type and 
one expects it to be non-random. However for non-isochoric alloys, the minority component 
introduced in the matrix of the majority component gets shifted from the unrelaxed lattice 
positions. In other words where such a minority component sits, the lattice locally deviates 
from that of a regular lattice. 

The effect of lattice distortion depends on the local environments as the structure matrix 
essentially vanishes beyond the second nearest neighbour for most of the closed structures. As 
an example, on a fcc lattice we can identify the smallest tetrahedral units of nearest neighbour 
atoms. The possible combinations of A and B atoms occupying the corners of the unit can be 
of type AAAA,AABB,ABBB,ABBB,BBBB (shown ~n fig 3.6). 

The configurations obtained by rotation from another configuration have same contribution 
to the structure matrix. Thus the structure matrix element between two points occuring in the 
unit will be given by 

S~,L,Rj,., ,.',ot( AAAB)  r , S~'~'~)nR~nR, nR, nR,,, + ~R~L,R,L' Ln~nR, na, t I - nR,,,) + . . .  
+ ( 1  - nR,)nRjns~n~ + nR,(1 --  nR.)nR~nR~ + 

q~(AABe) n~ , .R~ (1  - n s , ) n ~ ]  + ~'R,L,R~v 
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[np~nRi(1 -- nRh)(1 -- np,~) + (I -- nR,)nR~(1 -- nRh)nR,,~ + 

(1 - nn~)(1 - nat)nak nn.~ + (1 - nR~)na~ na, (1 - hR,) 
sa(BBBA) 

+ n n ~ ( 1  - nR~)(1 - nR.)nR~. + nR,(1 -- nR~)nR~(1 --  nR~.)] + R,L,R~L' 

[nR,(1 - , % ) ( 1  - nR~)(1 - n ~ )  + (1 - nR,)nR~(1 -- nR~)(1  --  h R . )  

+ ( 1  --  nR, ) (1  -- n R j ) n R , ( 1  -- h R . )  + (1 -- np~)(1 -- nR~)(1 -- n R k ) n p ~ ]  + 
~a(BBBB) [1 

P ~ L , ~ v  ~- - n R , ) ( 1  - nR~)(1  - h R . ) ( 1  - n ~ )  

where nRk and nR,, describes the influence of the local environment on the structure matrix 
element connecting points 1~ and l~j . This description takes into account both the effect 
of distortions of the distance between 1~ and Rj and the angular distortion of the square as 
we go from one configuration to another. For the fcc lattice with structure matrix practically 
vanishing beyond the first nearest neighbour shell, number of such inequivalent configurations 
considering all the nearest nelghbours will be 144 . Consideration of all these configurations 
will lead to an exact treatment of the distortion effect. However since the computational effort 
becomes very quickly prohibitive with increase in the possible values assumed by the S-matrix, 
we will assume that the influence of other nearest neighbours on the structure matrix element 
connecting each atom with its particular neighbour to be small. This is the terminal point 
approximation. In this approximation all terms involving nRk and n ~  in the example are 
replaced by the averages and the effect of angular distortions are only taken in an average 
sense. Invoking the terminal point approximation the number of inequivalent configurations 
become thre~, making the distribution of structure matrix to be a tri-modal one. Since all CPA 
calculations involving slngle-slte approximation cannot deal with off-dlagonal disorder with tri- 
modal probability distribution, one has to make further approximations at this point . The 
augmented space recursion , being free from such limitations can deal with this off-diagonal 
disorder exactly. 

Since n ~  - nR~ , an examination of the above Hamiltonian reveals that it involves four 
possible terms , one describing the uniform background against which the fluctuations are 
measured, a term describing fluctuation at the site 1~ , a term describing fluctuation at the 
site R j ,  nelghbouring site of I~ and finally a term describing joint fluctuations at both the sites 
P~ and Rj.The effective Hamiltonian in the augmented space is then constructed by replacing 
the site occupation variable nR by operator 1VI R defined in the configuration space. 

The degree of lattice relaxation is however a delicate problem which calls for the first- 
principle treatment including total energy calculation.The corresponding calculations should 
provide both displacement of atoms and the electronic structure in the relaxed lattice. Since 
such a self-consistent is not possible to carry out , at least at present time we shall assume 
that the lattice relaxes in such a way so as to keep the nearest neighbour distance equal to the 
sum of the corresponding atomic radii , namely the rigid ion structure model (RIS) (Ma~ek 
and Kudrnovsk:~, 1986). It should be mentioned that total energy calculations with respect to 
the degree of lattice relaxation have been done using super-cell LAPW method by Lu et. al. 
(1991a;1992) which has been discussed earlier. 
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Figure 3.6: Structure of a tetrahedron fcc cluster for various possible occupations of vertices 
by A and B atoms 
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3.6.2 Appl icat ion to Cu-rich CuPd and CuBe alloys 

Cu-rich CuPd  Alloys : 

As already discussed unlike other transition metal alloys for example Ag~Pdx_ffi, CuxNil-~ 
and CuxPdl_~ alloys consist of atoms belonging to different series in the periodic table and 
thus differing significantly in atomic number. Since the Pd 4d-wavefunctions are much more 
extended than the Cu 3d-wavefunctions, making Pd 4d-bandwidth two times greater than that 
of Cu,  the electronic structure of CuPd alloys dilute in Pd does not show the virtual-bound 
state which is characteristic of CuNi and AgPd. 

The electronic structure of non'ischoric Cu-rich CuPd alloys have recently attracted a con- 
siderable attention because of the controversial issue of expermimental result contradicting the 
theoretical analysis based on charge self-consistent KKR-CPA calculation. The disagreement 
between theories like KKR-based CPA ( Winter et .  al. , 1986) and experiments ( Wright et. 
al. , 1987) lie in considerable suppression of low energy peak and in the narrowing of Pd 
local density of states in the experimental data. The former effect comes from use of same 
Wigner-Seitz radii for Pd and Cu atom, leading to overscreening at the Pd site. This makes 
the Pd site more attractive, producing a low energy peak. Since LMTO calculations offer 
one the advantage of working with different atomic sphere radii for Pd and Cu,  the calculated 
density of states under the LMTO framework does show suppression of low energy peak. Sec- 
ondly the narrowing of Pd local density of states is caused by the lattice expansion around the 
impurity atom. The actual Cu-Pd distance is underestimated in the single mui~n-tin model. 
Consequently both the Cu-Pd and Pd-Pd hopping and the Pd band, widths are overestimated. 
We have carried out calculation for CugsPd5 and CuTsPd2s alloys. In Figure. 3.70) and 3.7(ii) 
we present the Pd local density of states for CugsPds and Cu~sPd25 alloys with and without 
lattice relaxation effect which show agreement with this expectation . In Figure. 3.8(i) and 
3.8(ii) we present the same for Cu local density of st'ates . 

Calculation for Pd local density of states taking into account lattice relaxation effect has 
been carried out using single impurity calculation of KKR-Green function ( Stefanou et. al. 
,1987b), LMTO-CPA ( Kudrnovsk~" and Drchal, 1989 )and LAPW-supercell method ( Lu 
et. al. , 1991a) . The single impurity result has been convoluted (the width 0.1 eV) by 
Kudrnovsk~ and Drchal (1989) to simulate finite concentration alloys so as to make the result 
comparable with that of the Cu95Pd5 alloy. 

Bose et. al. (1992) have applied LMTO-recursion method for calculating the density of 
states for the disordered CursPd25 alloy in which configuration averaging was done by direct 
averaging of LDOS for 50 configurations. This,as they rightly pointed out , cannot effeciently 
sample all the possible environment. 

If we compare our result with that of Bose et. al. 's result , we find that the ours result 
better reproduce the relative heights of the peaks for Pd local density of states as obtained in 
CPA calculation and in the experiment of Wright et. al. (1987) [ shown in F~gure. 3.9] where 
they obtained emperical results for Cu and Pd partial density of states by taking the advantage 
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Figure 3.7: The local densities of states on Pd site in (i) Cu95 Pd5 and (ii) Cu~sPd25 alloys. The 
solid one represents result without lattice relaxation and the dashed one with lattice relaxation 
effect. The vertical lines show the position of the Fermi Energy. 
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Peak position and 
relative peak heights 

P e a k I  
Peak II 
Peak III 
pz / p~r 
~1 / PIll 

LMTO- 
CPA 

-0.09 
-0.24 
-0.34 

1.36 
1.36 

LMTO- 
Recursion 

"0.08 
-0.26 
-0.35 

1.0 
1.0 

i 

LAPW- 
Supercell 

-0.073 
-0.21 
~0.33 
1.56 
1.4 

LMTO- 
ASR 

-0.075 
-0.22 
-0.39 

1.3 
2.0 

Table 3.5: Peak positions and relative peak heights of Pd local desity of states (relaxed calcu- 
lation) in the Cur~Pd25 alloy. Values quoted for LMTO-CPA and LMTO-recursion are taken 
from figures of Bose et. al. (1992) and the results for LAPW-supercell are taken from Lu et. 
al (1992). Peak I ,  Peak I I ,  Peak III denote the positions of three sucessive peaks in LDOS 
of Pd positioned from higher to lower energy .Peak positions are measured in Ryd from Fermi 
levels. Pz, PH, PHI denote density of states at corresponding positions. 

Peak position and LMTO- LMTO- KKR-Green 
relative peak heights CPA ASR Function 

Peak I 
Peak II 
Peak III 
P1 / PH 
Pl / PHi 

-0.11 
-0.26 
"0.35 

1.2 
1.2 

-0.12 
-'0.25 
-0.34 

1.7 
1.7 

-'0.Ii 
.-0.27 
"0.38 

1.5 
1.5 

Table 3.6: Peak positions and relative peak heights of Pd local desity of states (relaxed calcula- 
tion) in the Cu95Pds alloy. Values quoted for LMTO-CPA and KKR-Green function method 
are taken from figures of Kudrnovsk3~ and Drachal (1989) . Peak I ,  Peak I I ,  Peak III denote 
the positions of three sucessive peaks in LDOS of Pd positioned from higher to lower energy 
.Peak positions are measured in P,,yd from Fermi levels. Pz, PH, pHx denote density of states 
at corresponding positions. 
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Figure 3.9: (a) Cu and (b) Pd LDO$'s obtained from the valence-band photoelectron spectra 
in Cu75Pd25 of Wright et. a1.(1987). Results of relaxed TB-LMTO-ASR calculation are also 
shown by plotting data in the same scale as that of experiment for comparison. Fermi energy 
hu been adjusted at 0 eV. 
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of the copper minimum in the Pd photo- electron cross-section. 

For Cu local density of states , we donor observe three sharp peaks , which are obserbed 
in CPA calculations based on KKR mathod as well as LMTO method�9 However this is in 
agreement with the experimental result of Wright et. a/.(1987) . A comparative study of the 
characteristic quantities of component resolved density of states obtained in lattice relaxed 
calculation of various theoretical methods has been made in Table (3.5)and (3.6) for Pd local 
density of states in Cu~Pd2s and CugsPd~ alloys. 

Cu-rich CuBe Alloys : 

Cu alloyed with small amounts of Be increases the material strength of the pure metal 
considerably. It has been argued (Askeland , 1990 ) that the slip dislocations get pinned by 
strong local lattice distortions ( arising out of size mismatch of constituents ) giving rise to 
high strength-to-weight ratio. 

Be atom is smaller in radius as compared to Cu atom. The size mismatch between Cu 
and Be radii is about 10 % , larger compared to that of Cu and Pd which is about 7 % . 
Since Be atom is smaller in radius the lattice around Be site instead of being expanded gets 
contracted and use of same hopping underestimates Be-Cu, Be-Be hopping and Be band width 
. In Figure. 3.10. we have plotted Cu LDOS and Be LDOS for the CugoBelo alloy, with and 
without lattice relaxation effect. Wliile Cu LDOS remains essentially unchanged under lattice 
relaxation effect with minor effect as in CuPd alloys' the Be LDOS shows a broadening effect 
with the centre of gravity shifted towards lower energy. 

3.7 S U M M A R Y  

h summary , the proposed methodology of augmented space recursion in conjunction with 
TB-LMTO method proves to be a simple, accurate' and computationally emcient method for 
the first principle calculation of electronic structure of disordered alloy systems. The method 
provides a systematic way for extending beyondslngle site coherent potential approximation. 
It has been shown to be capable of taking into account the effect of lattice relaxation within 
a prescribed form The use of ' �9 recurslon technique with suitable terminating scheme on the 
augmented space, so constructed, makes sure of the fact that TB-LMTO-ASlt Green functions 
retain the essential Herglotz properties. 
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S T U D Y  OF P H A S E  F O R M A T I O N  
A N D  P H A S E  T R A N S I T I O N S  I N  
B I N A R Y  A L L O Y  S Y S T E M  * 

4.1 I N T R O D U C T I O N .  

As mention'ed in the previous chapter, alloys are multiphase systems and it is of great interest 
to the condensed matter theorist to find out , when and under what conditions a particular 
phase becomes favourable for a particular alloy system. Such studies involve determination of 
the ground states ( i.e. stable phases at 0 ~ K)as  a function of the composition and then use of 
the ground states to construct a temperature-composition phase diagram which indicates the 
regions of concentration and temperature within which the alloy will exist in a particular phase 
after it has been allowed to reach thermodynamic equilibrium. 

The phase diagrams of transition metal anoys show a wide variety of ordered structures 
stable at low temperature. One can distinguish namely the following types of ordered struc- 
tures: coherent structures which are built on a b.c.c, f.c.c, h.c.p.,lattice, A15 structures, long 
period ordered structures, laves or even more complicated phases. Several attempts to classify 
the ordered crystal structures of binary alloys A~Bi_x according to the values of the various 
semi-emperical parameters have been reported previously (Ducastelle,1991). The simplest pa- 
rameters are the average number of electrons per atom 1~ = x N.4 + (l-x) NB and the valence 
diffence A N = NA - NB �9 For the sake of good scientific progress it is now important to obtain 
a microscopic understanding. Such an understanding,should encompass fundamental concepts 

I ~ 

such as configurational energy, heats of mixing etc. and should lead to the constrtictlon of alloy 
phase diagrams with ab-initio, parametrization free quantum mechanical methods. It would 

1 * Part of this chapter has been accepted for publication in Phys.Rev.B (October,1994) 
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then hold the promise of providing a predictive capability of material properties leading to the 
design of materials with novel properties compatible with specific engineering applications. 

Models are often formulated in terms of effective multi-site interactions which can be used to 
represent the configurational energy of the system under study. These interactions can either be 
inferred experimentally, determined within phenomenological theories or obtained as the result 
of fitting procedures in specific statistical models. Such determinations have been employed in 
most applications in the past. During the last few years a first principle calculation of these 
interactions on the basis of the electronic structure of Substitutionally disordered alloys has 

�9 been possible as a step towards unifying the theoretical metallurgy and the basic physics of 
condensed matter. The difference between the configurational energies between two ordered 
structures giving the relative stability energy is then obtained as a linear combination of various 
effective interactions. To have an idea of the magnitude of energy that has to be handled for 
this, we quote the energies with different orders of magnitude, namely, the cohesive energy ( 
a few eV per atom ) , the formation energy ( a few 10 -x eV per atom) , the ordering energy 
( about 10 -1 eV per atom) and the relative stability energy ( about 10 -2 eV per atom). In 
view of such order of magnitudes , it is obvious that before any physical prediction about 
stability can be made, energies have to be computed very accurately. In literature several such 
methods exist which have been briefly reviewed in subsection 4.2.1. Our work as a contribution 
in this direction addresses the calculation of ordering energies in terms of uniquely defined 
, concentration-dependent effective cluster interactions in substitutional binary alloys, use of 
cluster interactions for study of phase stability and determination of instability temperature 
in phase-separating alloy systems by making use of cluster interactions in conjunction with 
statistical model. 

4.2 T H E  F R E E  E N E R G Y  M O D E L  

Discussion of the introductory section reveal that the study of phase formation and stabil- 
ity of solid solutions can be undertaken on the knowledge of accurate approximations to the 
configurational energy and on the use of statistical models. 

The configurational partition function can be written as 

Z = ~_, ezp{-E(state) /KBT} = ~ , g { n } e z p { - E ( { n } ) / K B T  
a~a~ea {n}  

(4.1) 

where g{n} is the statistical weight of the configuration defined by the set {n} of occupation 
wriables ( takes value 1 if a state is occupied by A type of atom or 0 if it is occupied by B 
atom for binary alloy systems ) 

Equation (4.1) can be rewritten as 
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Z = ~_, e x p { - F ( { n } ) / K s T }  

with the nonequilibrium free energy function F defined by 

F,[n} = E { n } -  TS{n} 

and the configurational entropy given by 

~{n} = KB lng{n} 

The equilibrium free energy is then obtained approximately by minimising the non-equilibrium 
free energy function ( i.e., replacing the sum in the partition function formula by its maximum 
term so that fluctuations about the most probable states are neglected ) as 

F,q ~- rnin{,qF {n } 

4.3 E N E R G Y  C A L C U L A T I O N  : M O D E L  I N  T E R M S  

O F  E F F E C T I V E  C L U S T E R  I N T E R A C T I O N S  

4.3.1 Previous Approaches 

Traditionally there has been two different approaches of obtaining the effective cluster interac- 
tions. The first approach is to start with the electronic structure calculation and total energy 
determination of ordered super-structures of the alloy and to invert these total energies to get 
the effective duster interactions namely ,the Connolly-Williams method (Connolly and Williams 
,1983) . The other approach is to start with the disordered phase, set up a perturbation in 
the form of concentration fluctuations associated with an ordered phase and study whether 
the alloy can sustain such a perturbation. This approach includes the generalized perturbation 
method (GPM) (Ducastelle and Gautier, 1976), the embedded cluster method (ECM) ( Gonis 
e$. ai.,1984) and the concentration wave approach (Gyorffy and Stocks, 1983). All the latter 
three work are based on calculation within the frame-work of coherent potential approximation. 
Recently there has been attempt ( Dreyss~ et. al.,1989) to obtain effective pair interaction for 
each individual random configuration of the disordered alloy using recursion technique and 
then to obtain the configuartion averaged pair interaction by direct configurational averaging 
(DCA). We give brief descriptions of all these methodologies. 

(1) The Method Of Connolly And Williams. 
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In the approach proposed by Connolly and Williams, the total energy for a given binary 
alloy configuration J, is written in the form 

where Vp and ~a denote , respectively the concentration independent effective cluster in- 
teraction (ECI)'s associated with clusters of p-sites and the p-site correlation function and the 
summation runs over all cluster types including the empty lattice on a fixed lattice structure. 
The correlation functions are given explicitly by the expression 

Np 
n r t t l n r n  2 . �9 �9 n r n p  

where Np is the number of sites in cluster p and {n) are the occupation variable at each 
site included in the cluster and the sum runs over all p-th order clusters of a given type. The 
correlation functions can be found ,essentially by inspection, for any ordered alloy configuration 
. The corresponding energies EC ~) can be obtained from a calculation of the electronic structure 
of the ordered material. A simple matrix inversion then allows the identification of ECI's. In 
spite of its recent applications, this method is restricted by conceptual difficulties. The most 
important among these is the uniqueness of the interactions. These parameters can be strongly 
dependent on. the set of ordered structures used in the fit. Such a configuratinal dependence of 
ECI's can lead to significant differences in calculated thermodynamic properties. 

(2) The  Method  Of Concentrat ion Waves. 

The method of concentration waves in the study of the tendencies towards ordering and 
phase separation in binary alloys was originally proposed by Khachaturyan and co-workers ( 
Khachaturyan , 1983) . Perhaps the most outstanding accomplishment of the concentration 
wave approach to ordering phenomena is the ability to predict the structure of the ordered 
phase. Such predictions are based on the knowledge, heretofore obtainable from experimental 
studies ( e. g. X-ray, electron and neutron diffraction), of the characteristic function S(2)(k). 
This function is essentially the lattice fourier transform of the pair correlation function. 

The method of concentration wave allows the calculation of SC2)(k) from a knowledge of 
the electronic structure of an alloy, thus obviating the need for obtaining correlation functions 
experimentally. The calculations involve introduction of a inhomogeneous CPA. In the inho- 
mogeneous CPA, it is assumed that each site in the alloy is characterized by a concentration xi 
, scattering matrix tl and self-energy Ei. The site dependent self-energy is determined through 
the condition 

Its) = z~ti = 0 

If environmental effects can be considered as being small in some sense, the thermodynamic 
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function of the alloy N can be expanded in powers of 6xl = xl - x, where x is the concentration 
of the solute. 

where 

N = N0 + E S! 1}~xl + 112 E S!~ )$xi~xj 

'"~ ..... '" = \6xl,...6zi. ~__~ 

is the expansion coefficient calculated for xr = x and N0 is the concentration dependent but 
configuration independent contribution of the homogeneous CPA medium. This method then 
yields the two particle correlation function on sites i # j as a direct fourier tranform 

S~ = Im ~ ~ S(k)ezp(-ik.P~)dE 
k 

where 

s(k) = (6t)2x(k){1 - - '  

with 

x(k )  = E (e-)2e v ( ik.R--)  
1~ .#m 

and 

~---tA--t B 

for binary AB alloy. (~ denotes the Green function of the homogeneous CPA medium . 
Although ,in principle, the method of concentration wave is exact within the context of linear 
response theory, its implementation requires the use of a mean field approach to ordering. It 
cannot take into account the non-linear effects of local statistical fluctuations. 

(3) Generalized Per turba t ion  Method.  

The thermodynamic potential for an electron system is given by 

N(T, #) = U - TS- #N 

where T,S, # and N refer to the temperature, electronic entropy, chemical potentia/and 
number of particles respectively. Considering the band structure contribution to N : 
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F = - d , O ( ,  - 

where N ( e , /~ ) stands for the configurationaUy averaged integrated density of states . 
For a particular configuration of a substitutional binary alloy , fully specified by the set of 
occupation numbers { n? } ( n? -- 1 if site i is occupied by an a species, 0 otherwise), the band 
energy 12e({n~}, p) can be writ ten,  by considering the expression of the integrated density of 
states as a sum of two terms : (i) the concentration dependent energy n,({z=},/~) of the CPA 
reference medium which is configuration independent and (ii) a configuration dependent energy 
fl:(,[n~'}, #) given by, 

12,({n • },p) - -~--~Iml f-oo~176 deO(e - / ~ ) T r  log(1 - X r  ~) 

where the trace is taken over the site and angular momentum space.X is the scattering 
v" . ,~~ i ) (v , i  I t~. , ' '  matrix operator which is site diagonal and has the form X = ~ i  ,.,~v .-i-i ,-, , -, 

being the scattering matrix for orbltals u,v characterizing an atom of type c~ at site i embedded 
in the CPA medium. The quantity r ~ is the strictly off-diagonai part of the homogeneous CPA 
Green function. Expanding the logarithm, making use of the CPA condition for the case of 
binary alloys Ax-xB~ and the condition 

AX = X B - X A 

we obtain 

a . ( { . ,  } , , )  = ..... 
2 

where 6xik - n s - x 
is given by 

2 and the k-th order effective cluster interaction involving sites i l ,  . . . ,  ik 

~(k) . 
t l  , . . . , t k  O0 

Then quantity ~'e commonly called the ordering energy is then given by to lowest order in 
the perturbation 

$ 

~The choice of 6zd is quite different in the concentration wave approach and the GPM and ECM . In the 
r wave method the choice is 6zt --- x~ - x. On the other hand in GPM and ECM (to be discussed 
later) one has 6xl -" np- x: 
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where Vo, is the effective pair interaction between sites o and s : 

~ .  = ~ . ~  + ~ . ~ -  ~ . ~ _  v2. ~ 

V~] indicates that all sites other than o and s are CPA medium sites and the sites o and s 
can be occupied by A or B atom in four possible combination. 

The positive (negative) sign of Vo, indicating a tendency towards ordering (segregation). In 
the CPA-GPM pair -interactions obtained are not usually renormalized in the sense that they 
donot include corrections from the self-retracing paths and higher order interactions, both of 
which Bieber and Gautier (1984) have shown can be important. 

(4) Embedded  Cluster  Method.  

In the embedded cluster method one starts from the configurational energy expressed in the 
form 

N 

n(( , , } )  = s<+ + Z: s['>~:, + 1/2 ~ z!]~6:,6+ + . . .  

i = l  i~ 

(4.2) 

where n+ - x + ~z~ and the coefficients v(p) occuring in the expansion are interchange ~'~il ,...,ip 
energies associated with clusters Cp of p sites. An p-site interchange energy for a given config- 
uration Jcp outside cluster Cp is defined as 

P 
E(p) .j~ g'}AB~(AA...A)[ r ,,,....,,r c , ) =  I I ( 1 -  �9 - ,Jo ~ s j  ) sl,...,sp . pJ 

j=l 

~(AA...A) (Jc,) denotes the where Qi AB changes an A atom to a B atom on site ii and -~1 ..... ~ 
configurational energy associated with A atoms on sites i l , i 2 , . . . ,  ip .  The expansion coefficients 
in (4.2) are given as the averages of E (p) �9 (Jvp) over all configurations Jvp of the medium i l , . . ,~p , 
surrounding the cluster Cp. 

~(p) E(p) (p) ~'~ Ei 1 ..... ip ( Jcp)PJc~, = ( ,, ..... ,p(Jcp)) = "~il ,...,ip 

PJcp is the probability of occurance of Jcp. 

Thus one have 
E ~ -- /El  = ~;  P+E + 

J 

& 
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E ~  ~:  ~ ~ ~ E~(J,~)) (4.3) - Pj,~(E~j ( J , j ) -  + 
J,~ 

E~ (J i )  ( E~ (J i )  ) is the confgurational energy associated with single site cluster when 
the site is occupied by A(B) atom for a given configuration J~ outside the single site cluster. 
Similarly E~ ~ ( Jij ) denotes the configuartion energy associated with pair cluster [a,~ = A,B] 
for given configuration J~j outside the cluster. 

Equation (4.3)involving effective cluster interchange energies is formally exact and thus 
avoids the need of suming a series such as in case of GPM. In the CPA approximation, the 
configurational energy of an alloy is calculated within ECM as sum of irreducible, renormalized 
cluster interactions associated with cluster of atoms embedded in a CPA effective medium. 

(5) Direct Configuration Averaging 
The method of direct configurational averaging proposed by de Fontaine and his co-workers 

defines the generalized Ising model of a binary A~BI_~ alloy for a system of N lattice sites and 
N atoms. Each of the atoms is associated with a specific lattice site and the spin variable aq 
takes values + 1 or -1 depending upon whether the atom associated with the site q is A or B.  
Any configuration of the system may uniquely be described by the N -dimensional vector a = 
( aq~, ~ , . . . ,  aqN ). The Hamiltonian of the system may be written as 

E(~) = r0+ Y,~q + ~ m~Y~o 
po>2 

where pa is the number of sites in the duster a ,  ~a are given by the product of spin variables 
over all sites , ql , q~ , ... , %o in a ,  averaged over all the equivalent clusters of lattice, rn~ 
denotes the multiplicity of the cluster a. The coefficients in the'expansion , ECI for a given 
duster a is given by the normalized trace over all configurations of the a cluster function with 

1 
v~ = ~ 5 :  ~ E ( ~ )  

For the case of a representing a pair of lattice sites q and q' one have 

y~,, = 1/4 ({EAA} + { Z ~ }  - {EAB} -- {ZSA}) 

where { E~j } is the average energy of all possible configurations with I-J pair of atoms at 
sites q and q'. 

In addition to the summation over all configurations ( the grand canonical version ) it is 
possible to define a complete, orthonormal basis o~ functions in the space of configurations at 
a given concentration ( the canonical version ). In the latter the cluster expansion co-efficients 
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have an explicit concentration dependence. Both schemes for defining ECI's have been used 
in the DCA and definite relationship exist (As ta  et. al.,1991) between the concentration- 
independent and dependent ECI's , in the thermodynamic limit . The real space recursion 
method in conjunction with orbital peeling technique is used for determination of ECI at a 
given configuration . The random effective interactions are then configuration averaged by 
direct summing over 20-30 configurations where the configuration sum is a restricted one over 
all configuration with fixed concentration for concentration dependent ECI's and an unrestricted 
, unweighted one for concentration independent ECI's. 

The method of direct configuration averaging is restricted by the fact that it is not possible 
to make sure that the true thermodynamic limit is achieved . It has been shown by Berera 
(1990) that the convergence of the numerical values of cluster interactions with the number 
of configurations becomes increasingly worse for effective interactions between more distant 
neighbours, reducing the accuracy. 

4.3.2 Present Approach 

The starting point of our calculation is the expansion of the configuration energy in terms of 
effective cluster interactions. The expansion for the configuration energy E for a binary alloy 
A~BI-~ may be written as : 

N N 

sCn,) = zoo) + E + 1/2 E + . . .  

i=l id=l  

Sxl is the concentration fluctuation given by n~ - x , where x = ( nil. The coefficients 
E (~ , E0) ... are the effective renormalized cluster interactions (renormalized in the sense 
that all possible scattering off from a cluster of definite size embedded in an average medium 
are included). E (~ is the energy of the averaged disordered medium, E~ 1) is the interchange 
energy for the species A and B, and it defines the single body interaction resulting from the 
interchange of a B atom with an A atom at site i in the alloy, E~ ) is the effective renormalized 
pair interaction which is the difference in the single body interaction at i, when sites j (~ i) is 
occupied either by A or B atom. 

The renormalized pair interactions express the correlation between two sites and are the 
most dominant quantities for the analysis of phase stability. The single-body interaction , 
though volume and concentration dependent are structure insensitive and should not be con- 
sidered in stability analysis. We will retain terms up to pair interactions in the configuration 
energy expansion. Higher order interactions may be included for a more accurate and complete 
description. 

At this point it is worth mentioning that our scheme of calculation of the renormalized pair 
interactions is similar to other methods based on embedding clusters in an effective medium. 
The calculation involves the determination of the, electronic structure as well as averaging 
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over different configurations of the system. It is precisely in this averaging scheme that the 
different methods based on the embedding method differ from one another. In the CPA-ECM 
the averaging is done within the framework of the CPA. In the DCA the averging is done 
directly by summing over different random configurations. Our scheme employs augmented 
space recursive method for obtaining configuration averaged Green function in conjunction 
with orbital peeling technique introduced by Burke (1976) which utilises the information about 
local properties provided by recursion method for calculating small energy differences avoiding 
numerical instability. We give below a detailed description of determination of effective pair 
interaction under this scheme. 

Determination Of Effective Pair Interactions. 

Often the most important effective cluster interaction of the concentration fluctuation ex- 
pansion of the conflgurational free energy is the effective pair interaction (EPI) defined as 

= VAA + VsB - VAs - 
(4.4) 

It gives the interchange energy associated with two sites embedded in an otherwise average 
medium, being occupied by A or B type of atom. In :{he Hartree-Fock approximation ,the total 
energy of a solid consists of two terms, an one electron band structure contribution Vss and 
an electrostatic term VEs which includes several contributions . These are coulomb replusion 
of the ions and the correction for double counting the electron-electron and the exchange and 
correlation energy in Vss �9 It is usually assumed that for differences like in (4.4) , the elec- 
trostatic contributions approximately cancel out and one is left with solely the one-electron 
band-structure term. This assumption has been shown to be valid in a number of alloy sys- 
tems. Thus what is needed is to calculate the one electron band structure contribution with 
fixed occupancy at sites i and j in an otherwise average medium. 

v,, = 

where EXF J and nzj(E) denote the Fermi-energy and electronic density of states for specific 
case with (I, J = A,B) . 

Conservation of electrons imply that 

nAA(E)dE = nAB(E)dE 
d - - 0 0  J - - 0 0  

and 

 BB(E)dE = nBA(E)dE (4.5) 
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Writing 

where EF represents the Fermi energy of the averaged medium, n(EF) is the density of the 
states of the averaged medium at E = EF and AEIF a = EF- E/J, one has fromeqn (4.5) 

]_~ (nAA(E)+ n ~ ( Z ) -  nA~(~)- n~AC~)}aZ ~ ( ~ E y  + aEf  ~ - : ,~f" - aE~}n(E~) 

Expressing effective pair interaction in terms of band structure contributions one have 

Ei~ = .,-~ EnaA(E)dE-.,_~ 

Using 

7" 7" EnAs(E)dE + EnsB(E)dE - EnBA(E)dE 

and eqn (4.4) this leads to 

Eli = : : :  (E - EF)An(E)dE 

with An(E) = nAA(E) + nss(E) - nAB(E)- nBA(E) 

According to Einstein and Schriffer (1973) for an Hamiltonian H with eigenvalues Ek 

d e t ( E I -  H) = I I ( E -  Ek) 

-~Im• ~- dElOgdet(EI- H) = ~ ~(E - Ek) 
k 

= n(E) 

Here E - E+z0. So that 

ZX~(E) - (-1]r)Imd- ~log det((EI - HAA)) det((EI - HBB)) 
det((EI HAB))det((EI- HBA)) 

_ -- d ~ ( Z  ) 
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where r/(E) the generalized phase shift is defined as 

rl(E ) - (-l/~r)Imlog ~ det(~zJ)~zj 
IJ  

with 

-1  f o r I -  J 
~za'- +1 f o r I ~ J  

and 

(gzJ) = ( ( E I -  HxJ) -1) 

(...) denoting averaging over all sites except i and j, 

The operation involved in the definition of EPI is an exchange of atoms on sites i and j . 
Since this is a localized perturbation the size of the determinant is finite. The Hamiltonian for 
an A atom at site i and a B atom at site j for example could be written in block form as 

Ha = [TtBa J \  r 7 os 

where ~ (~/Js) are the Hamiltonian submatrices describing the A(B) atoms at site i(j) 
, ~/o is the Hamiltonian submatrix for the host an'd the other matrices couple the different 
submatrices. Since the subblock of the Hamiltonian relative to all atoms except those at 
sites i and j is unaltered under the exchange procedure involved in the definition of EPI ,  the 
orbital peeling method provides an efficient means for obtaining the generalized phase shifts. 
It provides accurate computation of differences of integrated quantities involving density of 
states when the difference of the integrated quantities are smaller than the absolute error in 
the integrals, avoiding a large substractive cancellation procedure. 

From the block representation of H AB one find that ( EI -H AB ) has (EI - 7"4 ) as a submatrix 
and from the properties of a partitioned matrix (Burke,1976) it follows that 

det(EI - H z J) = det G -ltJ det(EI - 7"/0) 

where Gzj denote the upper IJ block of the Green function QzJ. 

Hence one has the generalized phase shift 

= (-l/ ')Imlog det  ;a )det(CBa) 
det(a A) det(CB ) 
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Orb i ta l  Peel ing  Technique 

For the case of Hamiltonian described by m-orbital basis set, G~j's become matrices of size 
2m x 2m and one has to find the determinant of matrices having rank 2m. A useful feature 
of orbital peeling method is that one needs to calculate only the diagonal matrix element of a 
specific Hamiltonian . The basic philosophy lies in' removing the embedded atoms orbital by 
orbital. Mathematically this is an convenient method , since this turns the term log det into 
sum over separate logarithms of individual matrix elements. Using repetitive use of partitioning 
properties of G matrices, Burke demonstrated that 

det a,., = ]~  O~k 
k 

with 

= 

where H~ is the matrix formed by deleting the first (k-l) rows and columns of H" . It 
seems that for each pair {I J} two atoms are to be peeled, but because of the symmetry in the 
definition of EPI one needs only one atom to be peeled. Among the pairs (AA) and (BA) the 
difference lles in the occupancy of the site i which is occupied by the A atom in one case and 
B in the other while the site j is occupied by A type of atom in both the cases. If one peels 
off the site i then what remains is an A type of atom at site j and the remaining host. Since 
the contribution of pairs (AA) and (BA) are of opposite sign,  the contribution of pairs (AA) 
and (BA) with i-th site peeled off cancel out. Similar argument holds good for pairs (BB) and 
(AB) . Thus in computing the phase shift one requires peeling only on the atom at position i 
for each of the four possible configurations. 

Once the phase shift is obtained , one is left out with performing the integration . The 
integration by parts lead to 

The behaviour of this function quite complicated and hence integration by standard routines 
( e. g. Simpson's rule or Chebyshev polynomials ) is difficult, involving many iterations before 
convergence is achieved, Futhermore the integrand is multivalued, being simply the phase of 
det ~ij(G~rj)~t.r. The way out for this suggested by Burke is rooted in the fact that 

JElOg G p-1 1 =EE-z, ~t---1 

P 1 

~t--1 

where Z~ ( P.y)'s are the zeroes (poles) of G expressed as continued fraction expansion 
evaluated upto p levels. 
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Substituting this in the definition of EPI one have a series of unit residue poles on the real 
axis enabling one to obtain EPI as sum of terms involving zeroes and poles of (~xaj) : 

where Np (Nz) is the number of poles(zeroes) below Er. The factor 2 accounts for the 
spin degeneracy. This technique referred to as method of poles and zeros enables to carry out 
integration avoiding the problem of multivaluedness. 

Calculation Of Peeled Averaged Green Function 

Thus the determination of effective pair interaction reduces in determination of zeros and 
poles of peeled off Green functions with pair {IJ} embedded in an average medium�9 We shall 
employ the augmented space recursion coupled with the tight-binding linearized muffin tin 
orbital method (TB-LMTO-ASR) for a first principle determination of configuration averaged 
peeled off Green functions (~AA,k)  , (~Af l ,k)  , (~BA,k)  , (GBB,k)  . The configuration averaged 
peeled off Green function (~zj,~,(z))is ((zI-lt[/)-x), H~ a representing the random Hamiltonian 
with sites i and j occupied by I and J type of atoms and (k-l) row and columns deleted from the 
Hamiltonian matrix element involving the site i Thus H IJ in the most localized sparse tight �9 ]r 

binding representation derived systematically from the LMTO-ASA theory and generalized to 
random alloys has the following form: 

Z-/'~J _ + ~ . , t  -- C~,ta j a./+ ... 
l-~k l--1 

9 

+ F. 
m~id t--1 

9 9 

+ ~ ~ E ^ '~ " '  ~  " (^ ' / ' '  8al/',~)2,o~ "--N,t ~it,m~l \~m,~'  + " " "  
m ~ i t = k  s 

+ . ~ , _ . , _ . - ,  ~ , . ~ , , ~ - - ~ . , .  , .  ... 
m~j /=1/1=1 

9 9 
(^~n,s aA~12n=) c~ ^112,1..f .. + ~ ~  v-',,,t + - , ~  ,.,,~,~... 

rn~:, / t= l  t l =k  

9 9 
+ Z : : C  :E:: ( ^ ' / ' '  6AI/ ' .~) o~ ~,/,,, t V-'m,t + ~'rnt,jz'"q,t' amaj... 

m~i t = l  tl--1 
l) 9 

v .  r^~/,,~ 6~,I/,,,~,) ~ (^,/,,,, + eAI/,,~.) + E: :C :C ~ ~.-..,, + s~,,~ ~_.,,, 
m # i j  ngid t=l t ' = l  

(4.7) 
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We note that the Hamiltonian has both diagonal and off diagonal disorder characteristic of 
LMTO Hamiltonian of an random alloy. We shall retain this form of Hamiltonian as was done 
in case of the density of states calculations and shall use this for the augmented space recursion 
. The essential idea of augmented space recursion discussed in great detail in chapter 3 involves 
the replacement of random occupation variables {n,n~ by-operators {37f (~)} constructed in 
configuration space from the continued fraction expansion of the probabilitY density of variables 
n,~, so as to define an effective, nonrandom Hamiltonian in augmented space and to perform 
the recursion with this effective augmented space Hamiltonian in order to get the continued 
fraction coefficients of configuration averaged Green functions. We have already demonstrated 
the application of this methodology in connection with the determination of density of states 
for random alloys . We note that the difference lies in the form of Hamiltonian . Instead of 
being completely random is now a peeled one with fixed occupancy at two given sites . This 
prohibits the operations arising due to configuration fluctuations at sites i and j . Furthermore 
the potential and structure factor matrices at site i~ instead of being (9x9) matrices are now 
reduced matrices of rank ( 9 - k +1) • ( 9 - k + 1), k being the orbital which is to be peeled 
off. 

With these changes kept in mind,  the Hamiltonian operations in real space and in configu- 
ration space goes on identically as in case of a completely random alloy with efficient storage of 
configuartion states in binary words and use of logical operations for the action of Hamiltonian 
in the configuration space. With the occupancy of the two sites fixed, the local symmetry of 
the augmented space is lowered and one has to carry out the recursion in a suitably reduced 
subspace . However cutting off fluctuations at sites i and j reduces the rank of augmented 
space Hamiltonlau conslderablely, enabling us to do recursion in the augmented space without 
employing any symmetry reduction. 

We obtain continued fraction expansion coefficients of configuration averaged Green func- 
tions for four possible occupancies of i and j , AA , AB , BA , BB , in each case the orbitals 
from ( 1 - 9) being peeled off one after another. The poles and zeros of these Green functions 
are obtained from computed N number of continued fraction expansion coefficients. The poles 
and zeros being the eigenvalues of symmetric tridiagonal matrices of rank N and (N-1) are 
obtained by the method of bisection based on the Sturm sequence property followed by New- 
ton's method for isolated roots. Thus augmented space recurslon coupled with orbital peeling 
allows us to compute pair-potentials directly, without restoring to any direct averaging over 
several configurations. 

4.3.3 Comparison With Previous Approaches 

As mentioned earlier~ a number of methodologies exist in literature for the study of phase 
stability and thermodynamic properties of substitutionally disordered alloys . The common 
characteristic of these methods is that all of them rely on the first-principle calcul/ation of the 
electronic structure of judiciously chosen systems so as to extract sets of parameters relevant for 
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studying phase formation which can be used in conjunction with statistical models to calculate 
thermodynamic properties . Among the existing methodologies, in the KKR-GPM ( Turchi 
et. al. , 1988) and TB-LMTO-DCA ( Wolverton et. al. , 1993a ; 1993b) approaches , one 
obtains the real space pair interactions starting from the information of disordered phase , 
thus making these methodologies directly comparable to our TB-LMTO-ASR. Also both of 
these methodologies have been applied successfully to a number of alloy systems including the 
two in which our methodology will be applied. On the other hand,  the method of Connolly- 
Williams is based on calculation of ordered structures ( Lu et. a l . ,  1991b ) while in the method 
of concentration waves one obtains the pair correlation functions directly in reciprocal space 
(Staunton et. al. ,1991). These methods cannot be directly compared with our approach. 

Determination of pair interactions in the three methodologies namely KKR-GPM , TB- 
LMTO-DCA and TB-LMTO-ASR involves the determination of electronic structure as well as 
averaging over sets of configurations, both of which are achieved in distinct ways in the three 
methodologies. Pair-interactions being quantities of milli-Rydberg order depend sensitively on 
the description of the alloy Hamiltonian and the averaging scheme invoked. Therefore, before 
we present our result, we wish to make a comparison of our methodology with the two others 
, pointing out the similarities and dissimilarities. 

The TB-LMTO-DCA shares most of the features of our TB-LMTO-ASR : 

(i) Both methods employ the TB-LMTO for the description of electronic structure. Both 
use the first order Hamiltonian. 

(ii) In both methods, calculations are carried out in real space, without resorting to any single 
site approximation. 

(iii) Both methods use the orbital peeling method to obtain the effective renormalized pair 
interactions. 

In spite of all these similarities they also have a number of differences which may be shown 
to cause differences in numerical values of the pair interactions. Regarding the description of 
electronic structure , though both of them use the first order TB-LMTO Hamiltonian H0) , 
they differ in some of the important details : 

(i) 

(ii) 

For the input to alloy calculations, the TBLMTO-DCA assumes an alloy volume which 
is obtained either by Vegard's law or by energy minimization with respect to the lattice 
constant. The potential parameters for constituent elements are then calculated at the 
common Wigner-Seitz radius of the alloy. In our calculations we have taken unequal 
Wigner-Seitz radii for components, which takes into account charge self-consistency ap- 
proximately, yet accurately and consistently ( discussed in chapter 3 ). 

The TBLMTO-DCA uses the prescription of Shiba (1971) to obtain the off-diagonal 
matrix dement between unlike atoms. In TB-LMTO-ASR defined on the augmented 



Study of Phase Formation and Phase Transitions... 109 

(iii) 

space, one builts up the off-diagonal matrix element from the potential parameters Ar and 
A~ and the structure matrix S~ and one does not have to resort to Shiba's prescription. 

In the TB-LMTO-DCA the charge neutrality is achieved by shifting the on-site energy of 
a constituent with respect to the other, such that each configurationaily averaged atom 
is locally charge neutral. On the other hand, as emphasized , in the present scheme, 
charge neutrality is achieved by exploiting the fiexbility of atomic radii of constituents. 

The method of carrying out the configuration averaging involved in the definition of the 
pair interaction differs significantly in two methodologies. In the TB-LMTO-DCA the pair 
interactions are obtained for several configurations .randomly generated ( consistent with all 
possible concentration for the grand canonical version and consistent with a particular con- 
centration for the canonical version ) and the averaging is done directly as a weighted sum. 
Because the pair interactions are integrated quantities, they are expected to converge fast with 
the number of configurations sampled. However in principle such a method cannot sample all 
possible realizations or in other words there is no surity that the thermodynamic limit has been 
achieved. On the contrary, in the TB-LMTO-ASR the configuration averaging is done using 
the augmented space theorem. The subsequent termination of the recursive generation of the 
continued farction co,efficlents of the configuration averaged Green function can be carefully 
controlled. 

The KKR-GPM method is distinct from TB-LMTO-DCA and TB-LMTO-ASR. The main 
features of this" method are : 

(i) KKR is used for the description of the electronic structure. Since there is no linearization 
involved, the KKR method, is certainly more accurate than the TB-LMTO. 

(ii) The single site CPA is used for the configuration averaging. CPA with restored periodicity 
, in a mean field manner, facilitates the calculations to be carried out in k-space. 

(iii) In the GPM method , effective cluster interactions are defined perturbatively order by 
order, through self-retraced paths.  In the most CPA-GPM calculations, the EPI does 
not include corrections from the self-retraced paths and higher order interactions, both 
of which, as shown by Bieber and Gautier (1984), may be important. On the other hand 
TB-LMTO-DCA and TB-LMTO-ASR, both being based on embedding cluster type of 
approach are non-perturbatlve and include all possible scatterings from pair of atoms 
embedded in a random medium. 

In subsequent sections we present our calculations for PdV and PdRh and we make direct 
comparison between the numerical values of pair interactions evaluated in all the three methods. 
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4.3.4 Phase Stability in PdV Alloys 

The stability properties of the Pd-V system is well studied both experimentally as well as by 
theoretical methods like KKR-CPA coupled with generalized perturbation method ( Turchi et. 
a/.,1988) and by LMTO coupled with direct configuratlonal averaging ( Wolverton et. al. , 
1993a) Our choice of the Pd-V alloys is motivated by the fact, that in transition metal alloys 
(apart from few exceptions) the d band arguments show that the most strongly ordered alloys 
will have an average band filling near the middle of the d-band, or somewhere near five d- 
electrons, whereas alloys with band filling close to completely empty or full d level will tend 
towards phase separation. Pd-V alloys, with constituents on opposite ends of the transition 
metal series, will order according to the above prescription. Futhermore being a well studied 
alloy, we have results available for comparison so that the reliability of our methodology can 
be demonstrated. 

Figure 4.1 shows the total density of states for Pd-V alloys, for various concentrations with 
the positions 6f the Fermi level shown. In order to maintain accuracy the Fermi energy EF has 
been calculated from the H (1) - h o h Hamiltonian. For the calculation of the pair interaction we 
followed the same methodology coupled with orbital peeling discussed in detail earlier with first 
order Harrdltonlan. We found that since pair potentials are differences of integrated quantities, 
there seems to be no appreciable difference in doing the calculation with the HO) and H (1) - h 
o h Han~ltonlans. 

In Figure 4.2 and 4.3 we have plotted the nearest neighbour effective pair interactions, as 
functions of band filling and energy, at three different concentrations for the Pd-V alloy. The 
relation between the two figures can be understood by looking at the variation of the number 
of states per spin with energy. This is shown in Figure. 4.4. The shape of the curves is in 
agreement with those obtained by other methodologies ( Goals et. aI. , 1987) , consisting 
of a phase separating region at the band edges and an ordering region near the centre. The 
magnitude of the effective pair interaction decrease~ with distance with increasing number of 
nodes. In Figure 4.5 we have plotted V~,Vs and V4 3 for x -- 0. 5 as a function of band 
filling to demonstrate this point. This in turn indicates the rapidly convergent properties of 
the configuration energy expanded in terms of effective cluster interactions. We find that i 
Vii ~ IVy, Vs or V4[. so that the ordered structures appear only when Vx > 0. 

In Table 4.1 we present the results for the pair interactions upto the fourth nearest neigh- 
hours obtained from different methods for comparison with our calculation. The calculation in 
TB-LMTO-DCA has been done under the grand canonical scheme resulting in concentration 
independent pair interactions. Formally the concentration independent pair interactions de- 
scribed under the grand canonical scheme and concentration dependent pair interactions under 
the canonical scheme can be directly compared only at concentration x = 0.5 . It is for this 
reason in table 4.1 we present results for the 50-50 PdV alloy. 

3Vn - E ~  , [r~ - r j ]  - -  n a  w h e r e  a is t h e  l a t t i c e  c o n s t a n t  
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Figure 4.1: Density of states vs Energy for Pd~Va-x alloys. (a) x=0.0 (b) x=0.25 (c) x=0.5 (d) 
x=0.75 (e) x=I.0. The vertical lines mark the positions of the Fermi energies. 

PAIl:tINT. TBLMTO-DCA KKR-GPM TBLMTO-ASR 
2.0 Vl 

V2 
V3 
V4 

4.2 
-1.1 
0.3 
0.2 

-0.8 
0.5 
0.1 

4.3 
-0.1 
0.1 
-0.2 

Table 4.1: Effective Pair-Potentials in mRyd/atom for various distances between the pairs 
for a 50-50 PdV alloy. TBLMTO-DCA values are taken from (Wolverton et. al.,1993a) and 
KKR-GPM from ( Turchi et. ai.,1988). 
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It is clear from the table 4 that agreement in the dominant interaction V1 is better between 
the TBLMTO-DCA and the present work, while there is some mismatch between the values 
of V2, Vs and V4. The reason may be attributed to the differences in description of electronic 
structure and in the averaging scheme involved in the ~hree methodologies , as pointed out 
previously. The sign of V4 in our work is opposite to that of TB-LMTO-DCA and KKR-GPM 
�9 However negative sign of V4 is in agreement with recent work of Singh and Gonls (1993) where 
they obtained negative value of V4 within the frame-work of KKR-ASA-GPM. 

Once we have obtained the effective pair interactions , they can be used to calculate the 
ordering energy, hence the relative stability of various ordered phases at a given concentration. 
They involve calculating the energies of several structures suspected of being ground states and 
then simply choosing the ones with lowest energies . This approach suffers from the obvious 
deficiency that it crucially depends on one's ability to suspect the true minimum-energy states 
�9 In other words with this simple model , it is possible ( indeed , very likely) that one could 
miss the correct ground s ta te .  

Predicting ~ for a given binary system, which intermetallic structures will have lowest energy 
for all compositions at 0 ~ K ,  is an important task. Fortunately, most intermetallics of interest 
are superstructures of either fcc , bcc or hcp .  Then the problem of determining the lowest 
energy superstructures of a given lattice is a simpler one. 

We will follow the method given by Kanamori and Kakehashi ( 1977 ) of geometrical in- 
equalities The authors consider the energy of three dimensional Ising like model 

where Vk is the interaction constant of k-th nearest neighbour interaction and pk is the 
total number of k-th neighbouring pairs of particles in a given configuration . The particles 
correspond to atoms of minority component of binary alloys , since the concentration x is 
confined to the range x ~_ 0.5 and Vk is given by 

- v / A  + v ,  - AB - 

When the interaction is of finite range, the ground state Eg follows a broken line as function 
of concentration x , changing the slope d E J d x  at several characteristic values of x . At the 
inflection point the ground state is an ordered structure, while it is generally two-phase mixture 
of ordered strcutures corresponding to near-by inflection points at an intermediate value of x. 
This Eg vs x relation was derived rigorously by them for fcc lattice including interactions upto 

4~u comparing different results one should be careful about the units used. In the KKR-GPM and our 
work the effective interactions are quoted in mRyd/atom-spin, whereas in TBLMTO-DCA they a~e quoted as 
meV/atom. In addition in the KKR-GPM and our work the energy expansion is in terms of concentration 

~fluctuations, whereas in the TBLMTO-DCA the expansion is in terms of site-spin variables. This introduces a 
factor of 1/4 in the definition of the effective interactions. 
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COMPO 
- SITION 

PdVs 
PdV 
PdsV 

ORDERED 
STRUCTURES 

D022-L12 
A2B2-LIo 
DO22-L12 

KKR 
-GPM 

4.3 
4.5 
-0.4 

TBLMTO 
-ASR 

4.0 
2.02 
-0.31 

TBLMTO 
-DCA 

3.16 

Table 4.2: Antiphase boundary energies in mRy/atom-spin for PdV at different atomic com- 
positions. The antiphase boundary energies for the KKR-GPM has been taken from Figure. 1 
of ( Turchi et. al. , 1988) while the value for TBLMTO-DCA has been calculated from pair 
interactions quoted in table 3 of (Wolverton et. al. ,1993a) 

COMPO 
- SITION 

PdVs 
PdV 
PdsV 

ORDERED 
STRUCTURE 

LI2 
L10 

DO22 

TBLMTO 
-DCA 

-8.58 
-11.02 

-9.8 

KKR 
-GPM 

-6.67 
-7.40 
-2.31 

TBLMTO 
-ASR 

-7.98 
-10.53 
-8.54 

Table 4.3: Ordering energies in toRy/atom for PdV at different atomic compositions. 

four-th nearest neighbour by method of geometrical inequalities satisfied by the correlation 
functions p k ' s  . Under the minimum pl condition x = 0.25 and x = 0.5 are always the 
inflection points.  Defining f by 

~ -- V2 - 4V3 q- 4V4 

the authors proved rigorously that D022 structure and A2B2 are the corresponding struc- 
tures at x - 0.25 and x - 0.5 for ~ > 0 and L12 and Llo are the corresponding ones at x - 
0.25 and x - 0.5 for ~ < 0 . In Figure. (4.6) we present the superstructures DO22 , L12 , L10 
and A2B2. It indicates that ~ gives the energy associated with 1/2 a ( 1 1 0) ( a is the lattice 
constant ) between every two ( 0 0 1) planes . rIt is for this reason it is named as the antiphase 
boundary energy. 

In Figure 4.7 we have plotted the negative of anti-phase boundary energy ~ = - ~ as 
a function of band filling for Pd-V with x - 0. 25, 0.5 and 0.75. The number of zeros is 
in agreement with the arguments based on moments (there has to be at least four zeros) 
(Ducastelle,1991) . 

We find from Figure 4.5 that e < 0 at E - EF for x -- 0.75 suggesting that at this concen- 
tration DO22 structure is stable. A similar analysis shows that r > 0 for x -  0, 25 at E - EF 
and here the L12 structure is stable. This is further supported by the fact that an exchange 
of stability between L12 and DO22 occurs for large electron number. For x - 0 . 5  , among the 
possible ground state configurations are L10 and A2B2, we find Llo to be stable one with ~ > 0. 

In table 4.2 we quote the antiphase boundary results for three different alloy compositions 
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of PdV in three different methodologies. The TB-LMTO-DCA using grand canonical version 
of pair interaction can be compared with only the 50-50 alloy case. 

Ordering energy s gives a quantitative estimate of the energy difference involved in a order- 
disorder transition and is the most critical test of the formalism, because it is much smaller 
(typically of the order of 0.1eV or smaller) than other quantities relevant to alloying, such as 
the formation energy of the random state which is five or more times larger. Ordering energy 
being the difference between the energy of an ordered structure and the corresponding random 
phase is expressed in terms of effective pair interactions Vk as 

f~or = 1/2 Y~ VkSZoSZk 

6Xo, 8zk denoting the concentration fluctuation at site 0 and k respectively while Vk is the 
effective pair interaction between sites 0 and k .  In order to complete comparison with other 
works, we quote in table 4.3 ordering energies also. 

In particular, the ordering energy of the DO~ structure is rather small in the KKR-GPM as 
compared to the TBLMTO-DCA and our work�9 We should mention here that the TBLMTO- 
DCA includes higher order interactions (upto quadruplets). For PdV alloys with associated 
asymmetry about x = 0�9 inclusion of these higher order interactions may prove to be important 
( Wolverton et. al. 1992) 

It is interesting to note that the prediction of the stable ordered ground states for all the 
three concentrations is the same in all the three methods discussed�9 

4 .4  E N T R O P Y  C O N T R I B U T I O N  : T H E  B R A G G -  
W I L L I A M S  M O D E L  

The central problem of the entropy calculation is that of calculating approximate expressions 
for the number of configurations of crystal lattice having definite distributions of clusters of 
lattice points which may be,  in general, occupied by any one of a given set of atomic species 
�9 The Bragg-Williams model is derived from a state-of-order description based on single- site 
averaging i. e., on the point cluster. 

In order to derive Bragg-Williams model (BW) it is required to define non-trivial single site 
averages which can be obtained by sublattice averaging as follows: 

One considers an ensemble of M systems { sublattices in the Bragg-Williams s~ense ) , each 
system containing N number of lattice points. Initially all systems are assumed to have identical 
distribution nl and after that exchange of defect atoms between sublattice systems are allowed 

5figures for the TBLMTO-DCA have been read from Figure. 2(d) of the reference (Wolverton et. a/.,1993a), 
while those for the KKR-GPM is taken from Table 1 of (Turehi et. al. , 1988) 
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to take place conserving the internal energy. This procedure atomatically ensures long-range 
correlations between the sublattice systems so that the microcanonical ensemble average gives 

x i = <  n~ >0 = 1/M ~ n~ 
o~blattiees 

Now one seeks the number of ways gM of distributing x~ M number of A atoms and (1- 
x~) number of B atoms over the M sublattices in such a way that A and B atoms have correct 
fractional distribution of xl and ( 1 -x~ ) . The result is the familiar one 

M 
gM(i) = (ziM)t(1 - zl)M! 

Similar expressions are obtained for all other of N points of the sample lattice so that the 
total weight factor per sublattice system of the ensemble g is given by M-th root of the product 
over all N points 

rii ] 1/M g = gM(i)] 

Using the expression of configurational entropy S = KB in g ,  the entropy expression under 
Bragg-Williams approximation will be given by 

S = g ~ [ ~  xiln x, + ~ ( 1  - x,) ln(1 - x,)] 
i i 

where the Stirling's approximation has been used for the logarithm of the factorials. 

4.4.1 Phase-separation And Calculation Of The Instability Tem- 
peratures In Pd-Rh Alloys 

The Pd-Rh alloys provide a convenient test case for appilication of the methodology because of 
its particularly simple phase diagram, which consists of only liquid and fcc solid solution phases 
�9 It is one of the few alloy systems that does not show polymorphism and there is relatively little 
transfer of charge or size disparity between the atoms . Application of d-band like argument 
for Pd-R.h alloys with almost filled d-band give clustering tendency at low temperature. 

Figure (4.8) shows the plot of nearest neighbour effective pair interaction for PdrsRh25 , 
PdsoRhso and Pd25Rhr~ alloys as a function of bandifilling energy. 

We note that unlike the Pd-V alloy case, the plot is dominated by negative value of the 
pair interaction. In Figure. (4.9) we plot the effective pair interactions upto sixth nearest 
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II PAIR INT. TBLMTO-DCA KKR-GPM TBLMTO-ASR 

V1 
V2 
Vs 
V4 

-0.764 
~ 0  
~ 0  
~,0 

-0.85 
- 0.05 
-0.12 
"~0 

-0.80 
-0.02 
0.02 
~0 

Table 4.4: Effective Pair Potentials in mRyd/atom for various distances between the pairs for a 
50-50 PdPh alloy. TBLMTO-DCA values are taken'from (Wolverton et. al., 1993b) and KKR- 
GPM from (Turchi et. al.,1988) , In order to make our and KKR-GPM result comparable to 
that of TB-LMTO-ASR, effective pair interactions have been multiplied by factor of 1/4 as in 
table 4.1. 
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neighbours for the Pd~ Rhl_= alloy with x = 0.5. It shows that pair interactions in the Pd-Rh 
alloys decay very rapidly as a function of neighbour distance and the dominant interaction V1 
is always negative. In magnetic analogy this would correspond to a ferromagnetic interaction. 
In an alloy, this means that the constituent atoms prefer to be surrounded with atoms of their 
own kind. In other words, the alloy will tend to phase separate and will exist as a mixture of 
two phases , one phase is palladium-rich substitutional alloy and the other is rhodium-rich. 

In table (4.4) we quote the numerical values of pair interactions upto four-th nearest neigh- 
bours as obtained by KKR-CPA-GPM ( Turchi et. al. 1988), in grand-canonical DCA ( 
Wolverton et. al. 1993b) and in the present methodology . We note that the agreement of 
numerical values between different methodologies is much better compared to that of the PdV 
alloy case . This may be attributed to the fact that Pd, Rh being a much simpler system 
compared to PdV,  in the context of much smaller charge transfer and the amount of disorder 
present between the constituents, the difference between different methodologies may not have 
significant contributions . A systematic study of the effect of various alloy Hamiltonians on 
the numerical value of effective pair interactions for the Pd-Rh alloy system has been made 
by Wolverton et. al. (1993b). As already emphasized that the alloy Hamiltonian used in the 
present case is parametrized by constituent's TB-LMTO potential parameters , made consis- 
tent with the alloy Wigner-Seitz radius by volume derivative correction . Thus the potential 
parameters contain the information of the concentration which will be found to be important 
for desired asymmetry of the spinodal curve ( to be discussed later on ) .  The nearest neighbour 
pair interaction for the alloy Hamiltonian parametrized with TB-LMTO calculations in which 
Pd and Rh is each at its own equilibrium lattice constant has also been carried out. In such 
a scheme potential parameters of the alloy Hamiltonian do not bear the concentration depen- 
dence. For,  each concentration, it has been found, to have a larger negative value compared 
to that of earlier scheme. For PdsoRhs0 alloy calculation in latter scheme with concentration 
independent potential parameters give the value of V1 to be -2.71 mRy per atom per spin 
which agree well with the value -2.6 mRy per atom per spin obtained in systematic study of 
Wolverton et. al. (1993b) This in turn proves the reliability of the averaging scheme invoked 
in the present methodology. 

Calculat ion Of The Instabil i ty Temperatures  

We now undertake the calculation of instability temperatures in k-space . The process 
of ordering and segregation in binary alloys may be interpreted as the loss of stability of a 
disordered solution with respect to the static concentration waves . The fourier transform 
of the concentration deviations at each site from the uniform background of disordered solid 
solution represent concentration plane waves or static concentration waves, a term coined by 
Khachaturyan (1983) . As already mentioned the study of phase formation requires accurate 
approximations to the configurational energy as well as use of statistical models to obtain the 
configurational entropy. Thus minimization of the free energy F will be accomplished when 
the configuartional energy E reaches its minimum allowable value. The configurational energy 
under the approximation of pair interaction can be represented in fourier space as product of 
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fourier transform of effective pair interaction V(k) and that of pair correlation function Q(k) 

E = N / 2 ~ V ( k ) Q ( k )  
k 

N being the number of lattice points. 

Thus minimization of E will naturally occur for states of order characterized by maxima 
in the Q(k) pair correlation spectrum located in the regions of the absolute minima of V(k). 
Consequently much can be predicted about the types of ordering reactions to be expected from 
a study of the shape of the V(k) function, in particular, from a search of its absolute minima. 

The necessary condition for point ( h ~ ) to be at a minimum of V(k) is given by the set of 
equations 

6V = 0  (4.8) 6hO 

( a = 1 ,2,3). 

The wave vector is defined as ~ = E~ hob~ 

ha  = T/~a 
N 

(mn = 0 , 4- 1 , :t: 2 ,  . . .  ) for N number of real space lattice sites, b~ 's are the primitive 
translational vectors of the reciprocal lattice. 

The function V(k) possesses in addition to translational symmetry, the point grou 2 sym- 
metry of the reciprocal lattice. Thus if a solution of equation (4.8) is found at some k(h ~ ) ,  
other extrema of the same type must exist at all other points belonging to the star of the vector 
~, the star of a wave-vector consisting of all those vectors which transform into one another by 
the operations of symmetry of the space group of the reciprocal lattice. If a symmetry element 
( rotation, rotation-inversion or mirror plane ) Of the space group in k-space is located at the 
point (h) the vector representing the gradient ~ThV(h) of an arbitrary potential energy function 
V(h) at that point must lie along or within the symmetry element . If two or more symmetry 
elements intersect at (h) , one must necessarily have 

IvhV(h)l=0 

since a finite magnitude vector cannot lie simultaneously in intersecting straight/lines having 
only a point in common. At these so called special points eqn (4.8) is satisfied by symmetry 
requirments alone.  This universal character of the special points was pointed out by Lifshitz 
(1942) and by Khachaturyan (1963) and different types of ordered structures/can be related 
directly to the minima of V(h). 
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In other words given the knowledge of concentration wave vector, one can readily predict 
the most stable ordered structure of the system at low temperature , comparable with the 
knowledge derived from experimental studies like x-ray , electron and neutron diffraction . 
A peak at ~r - ( 0 0 0 ) indicates phase separation while a peak at k - ( 1 0 0 ) in a fcc 
material suggests ordering in the CuaAu or CuAu ordered structure. Peaks away from the 
special points may correspond to the formation of long period superstructures , a well-known 
example being provided by CuPd alloys . We have calculated the quantity V(k) by inverse 
fourier transform , by summing V, upto six shell 'of aeighbours . This method favourably 
contrasts with the evaluation of V(k) directly in k-space and is justified by the fast convergence 
of V,  with the shell number as shown in Figure. (4.9). Similar method of obtaining V(k) by 
inverse fourier tranformation have been adopted previously by Kudrnovsk~" et.al. (1992) in the 
context of surface alloys using TB-LMTO-CPA-GPM technique. In Figure. (4.10) we plot the 
V(h) surface for the PdsoRhso alloy at ha = 0 plane. The minimum is at (0,0,0) indicating < 
0 0 0 > type of instability with associated clus.tering effect. 

The stability limit of the concentration wave , that is , the temperature , at which the 
instability of the disordered solid solution with respect to static concentration wave first sets in 
is determined by the vanishing of the second derivative of the free energy. The concept of the 
stability limit coincident with the critical point in higher-order transitions is generally extended 
into metastable regions ( below first order transition lines) , defining the so-called ordering 
spinodal. For phase separating system like Pd-Rh,  it defines the region in the temperature- 
concentration plane below which the alloy is unstable and separates into palladium-rich and 
rhodium-rich" solutions. In the region just outside the spinodal, the alloy is metastable, given 
sufficient diffusion, the alloy will phase separate. The region of metastability continues to the 
phase boundary beyond which the solid solution exhibits clustering type short-range order but 
will not phase separate. 

Estimating the configurational entropy in simple point approximation of Bragg-Williams 
the stability limit To can be obtained in the following way. 

The expectation value of the configuartional energy is 

< Z >o= 2) < >0 

considering only the pair interaction term . The symbol ( 0 ) denoting microcanonical 
averaging. Adding to this the configurational entropy part free energy takes the form 

with 

F = ~"~V~j~~ ~ + KBT~.,[x,  lnx, + (1 - x,) ln(1 - x,)] + N V x ( 1  - x) 
i 

.yo = <  6xi >0 = xi - x 
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Figure 4.10: V(h) surface for the Pd~oRh~o alloy at h3 = 0 plane. 



Study of Phase Formation and Phase Transitions ... 128 

and the self-term V = Vii for i = j In keeping with the point cluster approximation, the 
average of the product < cSzicSxj >0 has been replaced by the product of averages 7 ~ . 

The second derivative of free energy with respect to 7 ~ is given by the harmonic term F (2) 
of the Taylor's expansion of the above mean field free energy F in powers of the configuartion 
variables 7 ~ . As mentioned, it is the relevant one for the stability analysis. For that purpose 
, it is convenient to simplify it by Fourier tranform ~ ' .  

F (2) = N / 2  Er(h)F(h)r(h) 
h 

where F (h) =.~'7 ~ and F(h) = Ks  T + V(h) x(1-x) 

The stability of a solid solution with respect to a small amplitude concentration wave of 
given wave vector k(h) is guaranteed as long as F(h) is positive definite. Instability sets in 
when F(h) vanishes i. e. 

F(h) = KsTo + V(h)z(1 - z) 

To being the temperature at which instability sets in for the concentration wave considered. 

Thus it appears that according to BW model , the stability limit or spinodal is always 
represented in the phase diagram ( T , x) by a parabola, symmetric about x 0.5. It is the 
concentration "dependence of effective pair interaction which bring about the asymmetry . In 
Figure. (4.11) we plot the stability limit temperatures for x = 0.1, 0.25,0.5,0.75,0.9. 

The points outline a roughly parabolic curve, the spinodal. We note that temperature x 
= 0.25 is larger than that of x = 0.75. This is in agreement with the experimental observation 
of nature of miscibility gap giving phase boundary between the solic~ solution phase and phase 

separating phase.  In terms of ECI's, the physical reason for the observed asymmetry can be 
understood in the'following way . Pure Rh has a smaller equilibrium volume than Pd . The 
potential parameters parametrizing the Hamiltonian which contain information of concentration 
, is consistent with an alloy Wigner-Seitz radius which decreases linearly from Pd-rich side to 
Rh-rich side . Thus the Pd-Rh distance is estimated to be larger in Pd-rich side compared 
to that in Rh-rich side , making the nearest neighbour interaction ( the dominant one in 
determination of stability limit) more attractive in Rh-rich side. 

The maximum point of the spinodal curve which corresponds to maximum temperature of 
the miscibility gap comes out to be 13500 K which is 1600 K higher than the experimentally 
predicted one ( Shield and Williams, 1987). The overestimation is contributed by the entropy 
estimate which in simple Bragg-William approximation gives an elivated estimate to transition 
temperature. Futhermore neglect of phononic contribution to entropy part also leads to a rise 
in calculated temperature. The agreement between the experiment and the results obtained by 
Wolverton et. al. (1993b) using Cluter Variation method for entropy estimation and that of 
Wang et. al. (1993) using Monte Carlo method is more closer. 
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Figure 4.11: Spinodal curve for PdRh alloys. The points indicate calculated points while the 
solid line is the cubic spline fit though points. 
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4.5 SUMMARY. 

Our results demonstrate that augmented space recursion and orbital peeling in conjunction with 
LMTO formalism, constitute a viable and computationally feasible approach to the calculation 
of phase stability in binary substitutionally disordered alloys . The estimated values of pair 
intercations for the systems studied are in general agreement with that obtained by other 
existing theoretical methods, along with some disCrepencies, the reasons for which have been 
pointed out. The transition temperatures calculated for PdrLh alloys within the frame-work of 
Bragg-Williams model of entropy calculation, gives somewhat overestimated values, which is 
expected for point cluster approximation of entropy calculation. 



C h a p t e r  5 

C O N F I G U R A T I O N  A V E R A G I N G  
OF T H E R M O D Y N A M I C  
P O T E N T I A L  I N  D I S O R D E R E D  
A L L O Y S  * 

5.1 I N T R O D U C T I O N .  

The concept of configuration avergaing is considered to be a central to the understanding 
of the properties of disordered sytems . Introduction of disorder causes lack of sufficient infor- 
mation about the sample. A particular configuration is defined by the set of random numbers 
characterizing a set of atomic sites . While each local environment of a sample is necessarily 
a microscopic realization of randomness , the physical properties measured by an experimen- 
talist is a macroscopic one, containing information about all possible statistical description of 
the system. In the asymptotic limit therefore, averaging over all possible local environments 
amounts to averaging over all possible configurations. This in turn introduces the concept of 
spatial ergodidty,  where in analogy with time ergodicity, the spatial averaging (in contrast 
to time averaging ) is replaced by configuration averaging , configurations being born out of 
disorder fluctuations rather than by thermal fluctuations. 

Now it may happen that in a physical system at finite temperature, some degrees of freedom 
are in thermal equilibrium, but some others are not.  This is the situation encountered in some 
magnetic alloys ( e. g. in spin glasses ).  The atoms carry magnetic moments that are assumed 
to be in thermal equilibrium , but frequently the alloy itself is quenched so that the atoms 
are frozen at some fixed positions , determined by the quenching treatment . The measured 

1 * The contents of this chapter has been published in J.Phys.Condens.Matter 6 1529 (1994) 
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thermodynamic potential ( or the free energy) at :a particular temperature then has to be 
obtained by performing an average over all atomic configurations using the thermodynamic 
distribution of that temperature as the statistical distribution .Such an averaging procedure 
, namely the quenched averaging differs from the usual annealed avergaing . In a random 
system we have two time scales : one rth associated w.ith thermal fluctuations and other rd~, 
associated with disorder configurational fluctuations . For quenched averaging rdio >> r~h , 
while for annealed averaging ~'dio ~ rth .In mathematical language , in annealed averaging, 
disorder averaging is done on the grand potential before the logarithm is taken to yield the 
thermodynamic potential ( free energy ) . In constrast , in quenched averaging, the disorder 
averaging is carried out on the thermodynamic potential itself, i.e. after taking the logarithm 
of the grand potential. As already mentioned, the~ power of augmented spcae formalism for 
disorder configuration averaging lies in the fact that it is not restricted to averaging of Green 
function only , but is a general one , applicable to any random function with randomness 
prescribed by a probability distribution with finite moments. 

We make use of this formalism to obtain quenched and annealed averaged thermodynamic 
potentials of a disordered binary alloy described by tight-binding Hamiltonian with on-site dis- 
order. We will follow the fermionic field-theoretic al~proach of the augmented space formalism 
leading to scattering diagrams for thermodynamic potential in the extended augmented space 
. We will s tudy,  in addition, the difference between annealed and quenched averaging from 
the scattering diagrammatic approach, to obtain insight into the difference between the two 
processes. 

5.2 T H E  A U G M E N T E D  S P A C E  F O R M A L I S M  A N D  
F E R M I O N  F I E L D  T H E O R Y .  

We start with disordered lattice problem with random site energies e l ' s  . The initial random 
Hamiltonian is given by: 

H = + 

Pi and Tij are projection and transfer operators corresponding to a countable basis {1i)} 
spanning the Hilbert space 7-/. The overlap matrix element Vii may be assumed to be non- 
random. According to the augmented space theorem (Mookerjee, 1973), discussed earlier, the 
configurationally averaged quantity (F / which is some function of the random Hamiltonian will 
then be given by ground state average of the operator F which is now the same function of an 
effective Hamiltonian ~I defined in the augmented space ~ = 7-/| r 
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The effective Hamiltonian I=I contains complete information about the quantum behaviour 
of the system described in 7/and its statistical behaviour described in r . 

The effect of disorder is to cause.scattering. This scattering event can be pictured as inter- 
action between the electron and pseudo-particles describing configuration fluctuations at each 
site against the reference state�9 If the disorder on each site is binary, then the statistics of these 
pseudo-particles should be fermionic because no two pseudo-particles can occupy the same site 
�9 The effective Hamiltonian I:I can now be written in second quantized form (Mookerjee,1974) 
in both spatial and disorder part giving 

= E  o!o, + E E E  + E E 
i i k kl i j 

b]k and bik create and annihilate pseudo-fermions at the i-th site . k,k' are additional 
quantum numbers specifying the orthogonal basis states in r �9 It specifies distinct values or 
configurations assumed by el. Rank of the matrix Mi is given by the number of orthogonai 
basis states in r i.e. by the number of k ' s  . 

5.2.1 Calculation Of The Quenched Averaged Thermodynamic 
Potential And Scattering Diagrams 

Since the effective Hamiltonian ~I in augmented space has now been recast in second quantized 
form characterizing the disorder scattering as an interaction between electron and pseudo- 
fermlon present at the scattering site, the usual tools of diagrammatic field-theoretic techniques 
can be applied. 

The quenched thermodynamic potential of a disordered alloy at temperature T can be 
written as 

(a)= - -~(folln Tr exp[/~(H-~N)]lfo). 

j6 = 1 /KBT  , p is the chemical potential of the system, N is the operator giving number of 
electrons. If0) = I'[ | If~) is the vacuum state of the field space. It is the state in disorder 
space which has no fluctuation, i.e. all the sites are assumed to be filled with pseudo-fermions 
of one specific field quantum number. As usual in the interaction picture formalism we define 
quantity U(f~) through 

exp[ -a (H0-  , N  + H')] = exp[-~(g0 - ~N)]U(a) 

Ho is the unperturbed and H ~ the interaction Hamiltonian. U(~) satisfies the equation : 
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OU(~) 
08 

= -H'O)U(Z) 

with H'(~) = exp(~ Ho) H' exp(-~ H0) and U(0) = 1!. Solution of U(~) in terms of the Dyson 
ordering operator is 

U(~) = 1 + E r ( - 1 ) " h i / " ' / d r 1  . ..dr,,PtH'(rl)...H'(r,~)]. (5.1) 
~,----1 

Let us now consider the specific problem of AB an  alloy with impurity concentration x of 
A atoms . The effective Hamiltonian H can be split' up into two parts : (i) the unperturbed 
Hamiltonian of the host B atom 

-o = Z~o!o,  + E Z ~ o ! o ,  

and ( i i ) the  interaction Hamiltonian 

H t - ZZZM,,~,,o!o,b]kb,,,  
i k kt  

The matrix M~ takes into account fluctuation ofi- th site energy el against es �9 Thus this 
fluctuation r I = ei - Cs can be either 0 with probability (l-x) or can  be W = (CA -- r with 
probability x .  So, p(~) - (1 - x)6(y) + x6(~ - W) 

The M~ matrix appropriate to this probability distribution i s ,  as introduced earlier 

�9 ~/~(1 - ~) ) 
M, = W ~/(~(1 ~) 

1 -  X 

The disorder quantum number k takes two values k - 0 and k - 1. For simplicity let us define 

B,to = r ~nd B,o = ~ b , o ,  B,~ = ~-=Z-  ~b,t, ~ d  B,~ = ~m=-Z- ~b,, 

Now 

H'(~) = exp(~go)g'exp(-~H0) 

= wr,,r~k Ek, o!(~)a,(~)Bt,,(~)B,,,(~) 

Further, defining W~(r, r ' )  - W6~j6(r - r ' ) ,  the above equation may be written as : 
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i j k k I 

Written in terms of U(fl) , expression for the quenched thermodynamic potential becomes 

(ft)~, = fro - -~(foltn r r  ezp[~(flo - Ho + #N)]U(~) l fo) .  

where ~qo i s t h e  thermodynamic potential for the unperturbed system characterized by the 
Hamiltonian Ho. In order to visualize how the scattering diagrams are generated in the aug- 
mented space, let us examine in detail the first-order term in the perturbation series expansion 
o f ( 5 . 1 ) :  

~ = --~1 ] dr(fol [Tr (ezp(/~(flo - / /o  + gN)) H'(r)]oo, Ifo). (5.2) 

The subscript .con refers to the fact that only connected diagrams in the Hilbert space 7"i 
are to be considered, since it is straightforward to show that the effect of taking the logarithm 
is to eleminate the contribution of all unconnected diagrams. 

Let us now define, 

[ ] { -Gij(rl'r2) f~ 
exv( ( o - Ho + = o Gij(rl, ~) otherwise 

G o is the finite temperature Green function corresponding to the ordered system. The corre- 
sponding Green function in the disorder field space is defined through 

(folB~k,,Crl)B,k.(r2)lfo) = g~k.~,.(r%, r2) = ,yJ,.,@ocrl - r2). 

where 70 = - zand~ ,x  - ( l - x )  

Above definitions follow from choice of the vacuum state as If0) in the disorder field space 

(~ which is a state in which all sites are described by quantum number k = 0 .  Thus b! Ifo) = 
0 and bllfo) = 0. 

Applying Wick's theorem to both the configuration and the spatial part of (5.2) and em- 
ploying the definition of G o and g we get an expression for the first-order correction as 

The corresponding scattering diagram is shown in Figure 5.1 . 
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Figure 5.1: The first order scattering diagram for the thermodynamic potential. Full fines 
indicate electron propagators, the dashed lines indicate the disorder propagators and the dotted 
line the interaction Wij 
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The solid lines represent the ordered Green function G O , the dotted lines represent disor- 
der field Green function g while the dashed lines represent interaction Wij(*l, r2). Using the 
expressions for the Green functions we obtain : 

Expressing in terms of Matsubara frequencies w, = i(2n + 1)rfl +/z with n = 0,4- 1,4- 2, 
. . .  ,4-oo and going over to momentum space we have 

zW lim [ d3p fl , -o . I  ~3 ~ G~ exp(-iwnr). 
oJri 

Similarly the contributions in second order coming from scattering diagrams shown in 
Figs.5.2(a) and 5.2(b) will be 

and 

5.2.2 

- 2w2-yf/ a P's 3 azv2s=3 G~ 

W 2 
G~ , W~) G~ w. ). 

Summation  Of The Perturbation Series For The Thermo- 
dynamic Potential  

In order to sum up the perturbation series of averaged thermodynamic potential it is not 
sufficient to consider only skeleton diagrams and to add the self-energy parts to the ordered 
state Green function G o because it leads to over-counting difficulties. To get a summed up 
expression for (fl) we notice that if we open up any of the n closed solid line loops of any 
the n-th order diagram for the thermodynamic potential , we obtain a possible n -th order 
diagram for the configurationaUy averaged finite temperature Green function. This is seen if 
we compare Fig 5.3 with FigS.1. 

Configurationally averaged finite-temperature Green function can be introduced as 

<GRR'( R, = (/ol I/o). 

where < .. > indicates thermal and (f0]... ]f0) indicates configurational averaging. Expanding 
U(fl) as a perturbation series and considering only connected diagrams in the Hilbert space 7-/ 



Gonfiguration Averagin9 of Thermod~tnamic Potential... 139 

, 
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Figure 5.3: The scattering diagram obtained by opening up one of the closed electron loops in 
the diagram for thermodynamic potential in Figure 5.1. This belongs to the scattering diagram 
set for the averaged electron propagator. 
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so as to cancel (U(fl)) in the denominator the first-order contribution to the perturbation series 
will be 

I S k k' 

= EiEi f f dndr2Wi.i(rl,r2)G~ rl)G~ (n, 7"R')giod0(q, r2) 
= --~WE, f dn~,O'R, n)~R,(n, ~'R') 

Changing over to momentum and frequency space above contribution becomes - xW [G~ w,)] 2 
Similarly second-order contributions corresponding to Fig 5.4(a) and Fig 5.4(b) are 

2 'd3pl ..... 

and 

If ~]~,)(p,w,~) denotes total self-energy part of the n-th order diagrams, proper or improper 
then n-th order contribution to quenched thermodynamic potential will be 

nn  -" 
1 d3p 

/ ~ ~ .  G~ ")(p'w'~) 
n~  

oO 

n=O 

the factor 1/n arises due to the over counting difficulty mentioned earlier. The difficulty of 
carrying out summation with factor 1/n can be overcome by using a mathematical trick. We 
may consider the coupling parameter W to be varying and integrate over different values of 
this parameter keeping the chemical potential p fixed. 

dSp 

where ~Y(p,w,,) is the sum of all possible self-energy par ts ,  proper or improper. 

Expressing in terms of the proper self-energy : 

E' = E + E G ~  ...... 
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Figure 5.4: The scattering diagrams obtained by opening up one of the closed electron loops 
in the second order scattering diagrams for the thermodynamic potential in Figure 5.2 
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we have an expression 

(5.3) 

The Chemical potential g can be determined from this by solving : 

a<n) 
N = 

N is mean number of electrons present . From equation (5.3) one has 

N 
Ogto 

. m  

Or 
1 ~_, dZP , o (p, 

The ordered free energy is given by 

1 d3p 
~o = / in[1 + exp(-/3(E, - #))]. --fl a 

Ep being the energy corresponding to the host Hamiltonian H0 with momentum p. 

Using this expression of the ordered free energy and the fact that differentiating any n-th order 
diagram is equivalent to differentiating any of its n solid lines, it follows that 

N = / amp 1 
8 - V  - - r (v, 

Equation (5.3) relates the quenched thermodynamic potential to the self-energy part of the con- 
figurationally averaged finite temperature Green function. The self energy ~ can be determined 
by summing up the irreducible scattering diagrams as shown in Figure 5.5. 

Summing up various infinite sets of scattering diagrams leads to various approximations. If we 
take into account correlated scattering from all sites w[thin,a cluster C exactly but ignore all 
scattering diagrams involving correlated scattering between sites within and without the cluster 
, the resulting approximation is a C -cluster coherent potential approximation (CCPA). The 
diagram for one such correlated scattering involving two sites is shown in Figure 5.6. The sim- 
plest of these approximations is the single-site coherent potential approximation (CPA). In this 
approximation only uncorrelated scatterings are taken in account . In diagrammatic language 
it amounts to considering only diagrams with non-overlapping pseudo-fermion loops associated 
with more than one site.  Mookerjee(1974) has shown that the summed up series for the scat- 
tering diagrams in augmented space in this case is klentical to that of the algebraic approach 
of CPA . Using the correspondence between scattering diagrams and graphical techniques of 
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Figure 5.6: A scattering diagram for correlated scattering from two sites .Such diagrams are 
neglected in the single site coherent potential approximation 
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Haydock (1972) and the direct relation between the algebraic and the graphical techniques, he 
has argued that a identical relationship holds for the summation of scattering diagrams for the 
correlated scattering from clusters and the algebraic, partitioning method for the CCPA. The 
averaged Green function and the self-energy as discussed earlier can be obtained by applying 
the ideas of the recursion method directly on the augmented space. The equivalence of scat- 
tering diagram summation and the algebraic method will allow us to use the above ideas to 
obtain the averaged thermodynamic potential in a generalized cluster-approximation. 

5.2.3 Annealed Averaging Of The Thermodynamic Potential 

The essential difference between quenched and annealed averaging of the thermodynamic po- 
tential is whether configuration averaging is done before or after taking the logarithm of the 
grand-potential . In diagrammatic language, before :a matrix element is taken in the configu- 
ration space, each vertex has two arrows as shown in Figure 5.7(a). The operation of taking 
the matrix element between If0) in configuration space, i.e. configuration averaging, amounts 
to joining these arrows in pairs to form disorder propagators. The same procedure is true 
for the trace operation in the real Hilbert space. Moreover, taking the logarithm amounts to 
discarding the unconnected diagrams. In quenched averaging, since we take the trace first, 
followed by the logarithm, a diagram like Figure. 5.7(b) will be considered as an unconnected 
diagram and hence discarded. On the other hand, for the annealed averaging, since we take the 
matrix element in configuration space after taking the trace, the same unconnected diagram 
now becomes connected in the full augmented space and hence when the subsequent logarithm 
is taken its contribution is not zero. Such diagrams in the full augmented space constitute the 
difference between the two different averaging procedures. 

Inspecting diagrams of various orders of the interaction parameter , it is straight forward to 
identify diagrams which, though unconnected in the real space, are connected in the full aug- 
mented space via the disorder propagator . Some of these diagrams are shown in Figure. 5.8. 
Physically it is understandable why the annealed averaging should have extra scattering dia- 
grams and why these should lead to a renormalization of the disorder propagator. In quenched 
averaging, the disorder fluctuations are frozen. Thermal fluctuations have no effect on disorder 
propagators. Once a system is in a disorder configuration, i t  always remains so. The picture 
of disorder propagators as propagators is a mathematical artifact, as was clearly understood 
in the scattering picture of the CPA earlier by Leathet. al. (1974). The delta function time 
dependence of the disorder propagator is a reflection of this fact. In annealed averaging, how- 
ever, thermal fluctuations and fluctuations in disorder configurations take place on the same 
footing. It is therefore not surprising that we have to consider extra scattering diagrams which 
express these fluctuations and we do expect thermal fluctuations to renormalize the disorder 
propagators and vice-versa. 

Summing up of the perturbation series of annealed thermodynamic potential needs introduction 
of a new type of configurationally averaged finite temperature Green function. Let us call this 
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Figure 5.7: (a) A scattering vertex in augmented space. (b) A new scattering diagram for the 
annealed average. Note that for anneahd average electron propagators renormalize the disorder 
propagator. 
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Figure 5.8: Scattering diagrams which arise in annealed averaging of the thermodynamic po- 
tential but not its quenched average. 
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the annealed averaged Green function G A in order to distinguish it from configurationally 
averaged Green function introduced in section 5.2.2 . Scattering diagrams for the annealed 
averaged Green functions are obtained by breaking open solid lines of the diagrams for the 
annealed thermodynamic potential ate shown in Figure. 5.9 . Considering specific case of 
Figure. 5.9(c) , its contribution to averaged Green function can easily be obtained by using 
previously mentioned rules for dotted, dashed and solid lines as 

E... E/"" f w,,,,. ( , ,  
ia *a 

a .,~, ( ~'R , n ) a . ,~, ( n , ~r)a,,,n, (~r, r R, ) a ~. ,~. ( r3 , ~-s ) a ~, ,~. ( r~ , ~'3 ) . . . 

grr(i2r2, isrs )g~  ( isrs,  i 6 n  ) g ~  ( i6, to, i . r . ) a ~  ( i ,  r . ,  i2 r2 ) 

For convenience we denote the quantum number k = 0 by T and k = 1 by ~ . Expressing in 
terms of Matsubara frequencies, contribution of above diagram to the self-energy will be 

x(1 -x)W2Gq,h(w,~)E(1 - x)2W4Gi,,i,(w,n)Gi~,i, (Wrn) 
tam 

Thus we notice that the effect of unconnected electronic Green function in the Hilbert space is 
to renoniialize the right-going and left-going disorder propagators. If we denote the contribu- 
tion of the right-going disorder propagator by g~ instead of (-x) and that of left-going disorder 
propagator by gt instead of (l-x) then the summed up self-energy diagrams including all con- 
nected diagrams in the full augmented space, connected either via the electronic propagator or 
via disorder propagator and containing only single propagator loops can be written as 

~A(.,~) = - w  E~=o E.+t=,, -r;'ri(1 + aT1)[G,:,~,(~,.)W] ~ No,t 

+E. , .  E~=o Eo+,=. w-r;.r~(z + o'r~)[a~,,~, (.,.)w] ~ No,, - W-r~ (5.4) 

where % and ")'e give the renormalized contribution of right-going and left-going disorder prop- 
agator ; art represents the contribution from the disconnected portions of the electronic prop- 
agator in the  Hilbert space which simultaneously renormalizes a left-going and a right-going 
disorder propagator, an example of this being Fig.5.9(b) ; No,t represents the number of dia- 
grams containing s right-going and t left-going propagators. 

It is easy to check that No,t = sN,_l,t + tNo,t-1 with No,o = 6o,1 and N0,t = 0 The second 
term in the above expression for EA(wn) represents the correction from self-energy diagrams 
independent of w,~, an example of this being Figure. 5.9(a) . 

The Dyson equation corresponding to the right-going and-the left-going disorder propagators 
can be written as (with c~ denoting either right (r) or left(l) propagators ) 



8"~ ~,n~!e I at. ua,,oqs stu~;t~!p ~ta.r~'~:~s ~r[~ tt.t sdooI uoa~o~[~ 
oq~ jo ~uo dn ~u!u~do ~q p~u!~qo ao~doad p~l,~u~ u~ ;tot sur~.~p ~u!;t~ S :6"~ ~an~!d 

(a) (q) 
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i ~ ..... -2 ....... -. 
, i,,~.'~: ~ ~.'~:~'",, i 
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o �9 
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'7",  = g~ + gao'a% 

with the self-energies ar and at given by 

~o = - E Z :  E 
wn n : O  ~  

Contribution of aT~ is given by 

w ' + '  [a, , , , ,  (,,,.)]~ .:+'-'lv.,,. (5.5) 

~T~ = - ~ ~ ~ ~ ~ ' ~ w  ~ [a,,,,,(~,.)]"+" N.,,N.,,,, 
wn n : O  ~ ~  

. . . . . .  + wT, a,,,,, @.). (5.6) 

The last term in equation (5.6) is included in order not to double count a factor already included 
in aTT~. 

Thus the evaluation of the summed up expression for the self-energy requires the knowledge 
of a~, at and aTl . Inspecting equations 5.5 it appears that , apart from the summation over 
Matsubara frequencies, the formally summed up expression is similar to that of the quenched 
self-energy under the single-loop approximation, in which the roles of the electronic propagators 
and the disorder propagators have been interchanged. Hence, in order to perform the double 
summation over various orders of interaction and over the number of distinct ways of arranging 
s number of right-going and t number of left going electronic propagators in equation 5.5 let us 
define analogous to Schultz and $hapero(1973), generating functions for a , , a t .  

with fo(u) = E~=oVtNo,t 

It satisfies the recursion relation 

oo 

rl(~,,) = E v / o ( = )  

V ! V 
fo(V) = 1-vf;_z( ) 

where 

f '  = df/dv along with the initial condition f0 = Inv. 

Utilizing the recursion relation of fo(v), the partial differential equation satisfied by generating 
function 1"1 can is given by 

(lvu ~)r~(~,~) = _~z + ar~(~,~)/a~ 
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changing variables to ~ = (u + v)/2 and ~? = (v - u))2 leads to the canonical form 

0rl  rl  I (5.7) 
a~ = (~2 _ ~2) - (~ + ~). 

writing aa = F_. a~,(w.) where a can either be  r or s  one may has 

= - k r , ( w a , , , , .  wo,,,,, 

Inserting this in equation (5.7) leads to the first order ordinary differential equation 

d~o( . . )  ~~ z (5.8) 
~ d~ = %  ~--r-+~. 

along with the boundary condition aa ~ 0 as ~ ~ 0 

In order to perform the summations in equation (5.6) apart from sum over Matsubara frequen- 
cies w.,  we rewrite the formal representation of aTl in the following way : 

fa/n 

with 

~T~ : 

O0 

- Z Z 
n m l  ~=0 ~ m n  

We notice that  
E No,,,, = (n - i)! 

e l  "t-t 1 = n  

OO 

We now define another generating function F2(v, u) = ~-~(n - 1)!v"A(u) where the function 
n----1 

n 

A(u)  = ~,uNr,,~-r. The recursion relation satisfied by f~(u) can be obtained easily as 
r----O 

A(~) = ~(I-~)l'_~(~) + (~-I)~A_~(~) 

with initial condition f l(u)  = u 

The generating function F2(v, u) can be shown to satisfy the the second-order partial differential 
equation 
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02r2(~, ~) 02r2(~, u) r2(v, u) 1 oF2 
v Ov 2 - u OvOu - ( 1 - u ) v  2 - v Ov 

By changing the variables u and v to ~ = v and r I = In v - In u , the above second order 
partial  differential equation can be reduced to the canonical form of a linear, inhomogeneous 
hyperbolic equation of the second order 

02F2 
= (5 .9 )  

where 

F2 1 1 F(~,~,OF2/O~,OF2/O~,F2) = T (  - ~/ exp(~)) - -~ 

In terms of this generating function we obtain 

We have to solve the equation along the curves defined by ~ = WGil.~l(w,)~le and r I = 
ln(WGil,,l(w,,)'y~/%) in conjuction with the boundary conditions ~ ~ 0,F2 ~ O, OF2/O~ ~ 0 

The solution of such hyperbolic linear partial differential equations with given sufficient bound- 
ary conditions is known exactly in terms of its Green function (see e.g. Sneddon ,1980). Once 
we have solved the equations 5.8 and 5.9, the summa;tion over Matsubara frequencies can be 
done in a trivial way by performing the contour integration 

f v  F(z)dz  
F(w,)  = 1 + exp[/3(z - #)] 

~On 

where the contour is taken to encircle the zeros of the denominator. 

As regards the summation in equation 5.4 the first and second term are identical apart  from 
summation over Matsubara frequencies and a change of sign in case of second term . We 
introduce a third generating function 

= E 
n = l  

OO 

with = 

r----O 
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It is easy to check that this generating function satisfies the first order partial differential 
equation 

0rs 0rs [ 1 ]  
UOu - v--~- v = I's l + ( l _ v ) u .  " 

Along with the boundary conditions u ~ 0, Fs ~ 0 for all values of v and v ~ 0, Fs ~ 0 
for all values of u. The solution of this equation with the given boundary conditions leads to 
obtaining ~A as 

~A(~) = 1 
a,,,~, "~. ' ( i t  J + aT,~)rs(wa,,,,,(o;.).y,, .y./~,,) 

1 
+ ~ a,,,,,(~.)(1 + ~T,~)r~(wa,,,,,(~.)~,, ~.1~,) 

can 

- W % .  

Finally since annealed Green function is obtained from scattering diagrams of annealed ther- 
modynamic potential by breaking open electronic propagator part annealed averaged thermo- 
dynamic potential will be given by an equation identical to that of equation (5.3) where ~ has 
to be replaced by ~A . The form of ~A under sing!e-loop approximation can be  obtained in 
the above prescribed manner. The advantage of this formalism is since it treats the quantum 
as well as statistical part in a unified way, whatever approximation is made applies equally to 
both part . 

5.3 SUMMARY. 

The fermion field theoretic approach to the augmented space formalism has been applied for 
obtaining thermodynamic potential of disordered alloys. Standard diagrarnatic technique has 
been employed for both types of averaging of thermodynamic potential - quenched as well as 
annealed with the following results : 

(i) Quenched thermodynamic potential of disordered alloys has been obtained in this formalism 
in a general way. 

(ii) Difference between quenched and annealed averaging of thermodynamic potential appears 
in considering certain additional classes of scattering diagrams in latter case. These are 
such that although they are disconnected in the real Hilbert space and would have no 
contribution if the logarithm were taken prior to averaging, become connected in full 
augmented space via disorder propagators ,Thus they contribute to annealed and not to 
quenched averages. 
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(iii) This difference between quenched and annealed averaging is manifested in summed up self- 
energy ~] which in turn is related to thermodynamic potential . Considering additional 
contributions to self-energy ~]A for annealed case , the effect of disconnected portion of 
diagrams in Hilbert space is to renormalize the disorder propagators. 

(iv) Under the single-loop approximation, two types of disorder self-energies ~ and o'r ,reno- 
realizing either left-going or right-going disorder propagator and another ~z u, renormaliz- 
ing both of them simultaneously may be obtained from generating functions which appear 
as solutions of first-order differential equations and linear hyperbolic partial differential 
equation of second order followed by summations over Matsubara frequencies. Given the 
boundary conditions these differential equations have solutions whose formal expressions 
are available. 
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